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Foreword

Remote sensing by satellite-borne senscrs is one of the most promising
methods for obtaining Arctic ice information from this remote and inaccessible

part of the earth. However, extracting ice type, concentration, and thickness, -

as well as measuring lead statistics from satellite imagery, is difficult. The
complications of Arctic remote sensing are not yet resolved to the extent
necessary to provide all of the products required to support naval operations

in the Arctic. This report presents a new approach to image texture analvsis-

that may have application to future sea-ice analysis. The teéhhigue is applied
1o passive microwave imagery of sea ice, where ice classificat:on capability
is demonstrated. This new technique could also be applied to synthetic aperture

radar (SAR) imagery, where it may provide ice-type information from the

SAR to be flown on the European satellite ERS-1 beginning in 1991.

W. B. Moseléy J. B. Tupaz,,Ciptain',' USN

Technical Director Commanding Officer



Executive Summary

A new approach to image texture analysis is developed. The approach is
based on linear unmixing of texture measures calculated over an entire image
(called a global approach), as opposed to most present texture analysis
techniques that compute texture over small neighborhoods (called a local
approach). The new global paradigm is appropriate for images where spatial
scales of the texiure variability are large with respect to the pixel spacing,
thereby making the local approach ineffective. Airborne passive microwave
imagery of Arctic sea icc contain textures that vary with ice-type. These ice
textures are cf the type best treated by the global approach. Sea-ice imagery
are used as test data to evaluate the global technigques that are developed. Pure,
single ice-type images; synthetic mixtures formed by mosaicking pure ice-type
subimages in known proportions; and naturally occurring rnixture images are
analyzed in the course of the study. Proportions of first-year, second-year,
and multiyear ice within mixture images are retrieved with root-mean-square
accuracies as low as .04 by the new method. This accuracy is adequate to
be wseful in many Arctic studics, but more important, the global technique
seems promising for many other remote sensing and general image processing
applications. Research areas that are required to advance the global method
are enumerated. The most important advancement in support of the global
method would be the development of new image texture measures that exhibit
linear properties under mixing operaticns.
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A Global Approach to Image Texture Analysis

Synopsis

Texture is an important factor in the analysis
of many types of imagery. One category of imagery of
spccial interest to the Navy is remotely sensed imagery
of Arctic sea ice. Various types of sea ice are
characterized by diffcrent textures in ice imagery,
whether the images are from a camera, an infrared
scanner, a microwave scanner, or imaging radar. Image
texturce analysis, both visual and computerized is
therefore a major ool used by the Arctic science
community.

The European Space Agency (ESA) is launching
the ERS-1 satcllite in 1991. The satellite will carry
a synthetic aperture radar (SAR) into a polar
orbit. The National Aeronautics and Space Administra-
tion (NASA) is building a receiving and processing
facility at the University of Alaska in Fairbanks for
ERS-1 SAR data from the Arctic region. The Navy
plans to use this SAR data at the Naval Polar Ocean
Center in Suitland, Maryland, as a supplemental source
of ice information to improve its operational Arctic
products. Onc of the key technologies required to
insure effective utilization of SAR data is the ability
to classify ice types based on texture within the SAR
images. Therefore, this study in the appendix is timely
in terms of potential Navy application.

Other groups, principally the Environmental
Research Institute of Michigan and the Canadian
Center for Remote Sensing, are also conducting ice
classification studies on the basis of image texture.
An important follow-on to this study will be the
compsarison of the texture analysis technigues
developed here with those developed by these other
researchers.

Summary

The appendix describes a2 new approach to image
texture analysis and presents the application of that
technique to a set of sample imagery. The image data
set is airborne passive microwave imgages of Arctic sea
ice. The products of this study are, therefore, twofold.
First, a new type of irnage texture analysis is developed
that may have broad application to many branches of
science, such as remote sensing, geology, medical

imaging, robotics, and others. Second, in the process
of evaluating the texture analysis with the sea-ice data
set, new insight is gained concerning the relationships
between ice image texture and the age and morphology
of sea ice.

Texture is normally considered to be a local property
within an image, In other words, texture at a given
location in an image can be measured by examining
a smali area immediately surrounding the point in
question. Following this logic, most texture analysis
algorithms are based on small, local (neighborhood)
calculations. There are, however, a class of textures
where the spatial scales of the texture are large with
respect to sampling interval, or pixel size within the
image. Textures are also found that require calculation
of texture statistics over large arcas of the image in
order to accomplish reliable discrimination of texture
tyopes. The ice imagery analyzed in the appendix is
representative of this class of textures, which cannot
be adequately discriminated using small neighborhood
{e.g., 3 X 3 pixel) operators. However, if the neigh-
borhood size is increased to achieve more reliable
estimates of low-frequency or spatially variable
textures, then the probability increases that the
neighborhood will encompass more than a single
texture type, thereby confounding the calculated values
of texture parametcers. The new paradigm for texture
anatlysis introduced here is termed a global, as opposed
to a local, analysis. Since large areas are required to
obtain stable statistics for the class of textures under
consideration, the neighborhood is simply expanded
to include the entire image, Texture measures calculated
from the entire image are then linearly unmixed to infer
the textural composition of the image, which
necessarily leads to the observed global texture measure
values. Under the global approach, one does not know
where in the image a particular type of texture occurs.
In essence then, the global approach is a means of
trading positional certainty for more accurate overatl
estimates of composition. In many applications
accurate image composition information is more
imipottant than precise positional information, so that
this trade-off is advantageous.

The appendix begins by describing the scanning
system that generated the sea-ice imagery used as test




data for texture analysis. Tue geometric and
radiometric characteristics of that sensor that would
inmpact texture in the recorded imagery are especially
bighlighted in that scction. Analysis procedures
required to avoid scanner artifacts in the texture data
are established.

The appendix then reviews image texture analysis,
contrasts the local and global approaches, and
introduces the concept of a ‘‘feature space’’ (a common
term in pattcrn recognition). Six mathematical proper-
ties of texture measures, which are desirable in this
study, are described and 25 candidate texture measures
are defined. The desired characteristics serve as the
yardstick for evaluating the candidate texture measures.

The first image data set is then presented. This data
set consists of 64- x 64-pixel image fragments
containing only a single ice type, which has been deter-
mined by prior expert interpretation of the images.
Values of the candidate texturc measures are calculated
for this image set, and the resulting numerical values
are analyzed to determine to what degree the candidate
texture measures match the desired characteristics
¢stablished in the previous section. Of the 25 candidate
texture variables evaluated, only 12 are shown to be
suitable for use in global texture analysis, and then only
if the mean brightness values are identical for each
texture class. For textures with varying means, only
six texture variables are found to be uscful.

The unmixing of globally calculated texture data 1o
infer textural composition of the image utilizes the
CABFAC and QMODEL computer codes, which
require that the data matrix have constant row sums.
Image texture data are not intrinsically constant-sum.
This problem is addressed and a data matrix transfor-
mation, which will put the data into a constant-sum
form in a manner that reduces the information loss
accurring as a result of the constant-sum formation
process, i5 defined.

The mathematical model for linear unmixing is
described, and the appropriateness of that model
is evaluated using texture measures calculated for the
64- x 64-pixel, pure ice-type samples. Once the
validity of the linear unmixing model has been
established, the purc samples are ““unmixed,’”’ even
though they are not mixtures. The compositions of
these image samples should be 100% for the ice class
to which they belong and 0% for all other ice classes.
Comparison of the actual compositions calculated by
unmixing with these known compositions provides the
first quantitative estimate of the ice-type discrimina-
tion power of global texture analysis.

The next step is the analysis of images that contain
more than one ice type. The mixture images analyzed
here arc synthetic mixtures created by inosaicking
the single ice-type images in various proportions. The
unmixing process is conducted for this synthetic data
set. Various techniques are applied to select end

members for unmixing. The end-member sclection
techniques are described and compared. Accuracies are
calculated for image proportions resulting from the
various techniques.

Natural mixtures are examined by using the synthetic
mixture data set to investigate questions pertinent to
natural mixtures. These questions arise because natural
textures have shifts in mean image intensity levels for
each texture class. This shift in means was artificially
removed in the first analysis of synthetic mixtures.
Because of this mean shift, only six texturc measures
are suitable for natural mixture images. The synthetic
mixtures are recreated, this time without adjusting the
mean intensity to a uniform value. The analysis shows
that the reduced number of texture variables and the
differences in the mean levels between texture classes
do not significantiy degrade unmixing accuracy.

The final step is the analysis of full-frame images
containing natural mixtures of ice types. The analysis
of natural mixtures in the present study is limited
because of lack of appropriate images in the data set.
The work done here with natural, full-frame mixture
images indicates that root-mean-square, ice-type
proportion errors on the crder of 0.05 may be possible
for simple, natural mixtures.

Conclusions and Recommendations

Conclusions resulting from this study are divided
into two categories. The first deals with the global
texture analysis paradigm, which was the major thrust
of this work. These conclusions cover matters of broad
applicability to the field of image processing. The
second category deals with information learned about
sea ice as a result of using imagery of that type as test
daia.

The Global Texture Analysis Paradigm

» The global approach to texture analysis was
developed and applied to a test data set with sufficiently
promising results that it can be concluded that the
approach may have merit for many image texture
problems.

¢ Both mandatory and desirable characteristics
of texture measures were enurmnerated. Of 25 candidate
texture measures evaluated, none met all of the
desirable and mandatory characteristics, and only
two—local homogeneity and Laws® energy masks—
possessed the mandatory characteristics, which
included correlation with ice type and linear behavior
under formation of mixtures. Here, of course, the key
item is the linear mixing property. Investigation of
additional texturc measures that exhibit this
characteristic wouid support further exploitation of the
global texture analysis approach.

* A procedurc was developed and applied here to
dcal with the nonconstant-sum nature of image texture



variables. Since this work was performed, a variable-
sum version of CABFAC and QMODEL has become
available. The analysis described should be repcated
using thesc new programs. If the SIFT used here
vesulted in significant loss of ice-type information, the
repeated analysis with the new code would give better
results, indicaticg even more promise for the global
techniques.

« The globa) approach should be applied to other
texture data sets to see if it does indeed have broad
applicability.

¢ Further study should be initiated to deal with the
problem of complexity occurring ia natural images.

» Failure to solve the complexity problem does not
eliminate the global method from piactical application.
There may be certain applications, industrial inspec-
tion and control, for example, where the scenes are
always simpie mixtures and this technique is applicable
withou: piesimplificaton.

e (Global unmixing of image texture is inexorably
linked ‘o a trade-off. Proportion accuracy can be
exchai:, =t ‘Ge positional vncertainty. If the global area
js large, wizn proportions can be extracted quite
accuratel,, bui ¢ne ¢does not know where within the
global area ihe partivaler texture in gquestion is located.
Couaversely, as the gioba! area is made smaller to

© ‘pinpaiut the location of a feature, the proportion filled

by that texture feaiure can be measured with less
certaiaty. This situation suggests that a pyramid
approach could be advantageously applied. Large areas
could be analyzed for maximum accuracy followed by
znalvsis of progressively emaller areas in selected parts
of the image where it is judged to be advantageous
based on criteria that would be unique to a given

- application.

Sea-ice Stience

© Proportions of first-year, second-year, and
multiyear ice types in samples extracted rrom KRMS
images can be calculated with useful accuracy using
linear unmixing of globally determined texture
MEASUIES.

¢ Dr. Duane Eppler of the Naval Ocean Research
and Development Activity (1984) and others have
classified ice types in the same KRMS data set. Their

classification work involved thresholding on image
brightness. They concluded that brightness temperature
thresholding alone was not adequate for classification
of ice types. The recommendation in that report was
that image texture be included, and provided the
stimulus for the present study. We demonstrated here
that texture can lead to calculation of accurate
(accuracy depending on image sizc) icc-type propor-
tions. Furthermore, the accuracy has been shown to
improve by an approximate factor of two when
mean brightness levels are added to texture data.
Unfortunately, Eppler’s previous work (1984) did not
give quantitative estimates of image composition
accuracies resulting from the thresholding method, so
direct comparison could not be made with the present
results. ’

» The proportion errors as a function of image size,
which are derived in the appendix, indicate what order
of spatial scales are required to adequately characterize
ice types. The 312 x 512 pixel images that resulted in
proportion errors of approximately 0.05 represent
6.4 km? of ice surface.

® The most critical hurdle to practical application
of the global technique to ice analysis is believed to
be the development of a preprocessing step that will
identify and simplify areas of complex textaral
structure.

¢ Assuming the above can be accomplished, this
texture analysis scheme should be applied to another
KRMS data set, where adequate representation of the
various ice types will permit complete unmixing using
only natural images.

» The real future of ice-texture analysis lies with SAR
rather than with passive microwave sensors. The
KRMS is a research tool, but operaticnally the SAR
is the sensor of the future. The ERS-1 satellite wiil have
a SAR in snace int 1991 and for the foreseeable future
thereafter NASA is establishing a receiving facility in
Fairbanks, Alaska, to receive that data over a large
portion of the Arctic. The Navy Polar Oceanography
Center in Suitland, Maryland, is planning to use this
SAR data to generate its operational ice products for
the U.S. Navy. Clearly, if the texture analysis tech-
niques developed here could be extended to SAR
imagery, then the potential payoff would be large in
terms of practical application,
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ABSTRACT

A new approach to image texture analysis is developed. The approach
is based on linear unmixing of texture measures calculated over en entire image
(called a global approach), as opposed to most present texture analysis tech-
niques that compute texture over small neighborhoods (called o local approach).
The new global paradigm is appropriate for images where spatial scales of the
texture variability are large with respect to the pixel spacing, thereby making
the local approach ineffective. Airborne passive micrewave imagery of Arctic sea
ice contain textures that vary with ice-type. These ice textures are of the type
best treated by the global approach. Sea-ice imagery are used as test data to
evaluate the global techniques that are developed. Pure, single ice-type images;
synthetic mixtures formed by mosaicking pure ice-type subimages in known pro-

portions; and naturally occurring mixture images are analyzed in the course of

the study. Proportions of first-year, second-year, and multiyear ice within mix-

ture images are retrieved with root-mean-square accuracies as low as 0.04 by
the new method. This accuracy is adequate to be useful in many Arctic stud-
ies, but more important, the global technique seems promising for many other
remote sensing and general image processing applications. Research areas that
are required to advance the global method are enumerated. The most important
advancement in support of the global method would be the development new

image texture measures that exhibit linear properties under mixing operations.
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I. INTRODUCTION

This dissertation describes a new approach to image texture analysis and
presents the application of that technique to a set of sample imagery. The image
data set is airborne passive microwave images of Arctic sea ice, such as shown in
Figure I-1. The products of this study are, therefore, twofold. First, a new type
of image texture analysis is developed that may have broad application to many
branches of science, such n.s remote sensing, geology, medical imaging, robotics,
and others. Second, in the process of evaluating the texture analysis with the
sea-ice data set, new insight is gained concerning the relationships between ice

image texture and the age and morphology of sea ice.

Texture is normally considered to be a local property within an image.
One definition of texiure is the “apparent minute pattern of detail in & given
area” (Hsu, 1979). The words “minute” and “detail” in this definition imply a
local character to image texture. In other words, texture at a given location in
an image can be measured by examining a small area immediately surrounding
the point in question. Following this logic, most texture analysis algorithms are
based on small, local (neighborhood) calculations. There are, however, a class of
textures where the spatial scales of the texture are large with respect to sampling
interval, or pixel size within the image. Textures are also found which require cal-
culation of texture siaiistics over large areas of the image in order {o accomplish
reliable discrimination of texture types. The ice imagery analyzed here is repre-
sentative of this class of textures that cannot be adequately discriminated using
small neighborhood (e.g., 3 x 3 pixel) operators. However, if the neighborhood
size is increased to achieve more reliable estimates of low-frequency or spatially

variable textures, then the probability increases thet the neighborhood will en-
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FIGURE 1-1. Typical 33.6 GHz image of Arctic sea ice.



compass more than a single texiure type, thereby confounding the calculated
values of texture parameters. The new paridigm for texture analysis introduced
here is termed a global, as opposed to a local, analysis. Since large arcas are re-
quired to obtain stable statistics for the class of textures under consideration, the
neighborhood is simply expanded to include the entire image. Texture measures
calculated from the entire image are then linearly unmixed to infer the textural
composition of the image, which necessarily leads to the observed global texture
measure values., Under the global approach, one does not know where in the
image n particular type of texture occurs. In essence then, the global approach
is a means of trading positional certainty for more accurate overall estimates
of composition. In many applications accurate image composition information
i1s more imr portant than precise positional information, so that this trade-off is

advantageous.

The following paragraphs present an overview of this dissertation.

Section II describes the scanning system that generated the sea-ice im-
agery used as test data for texture analysis. The geometric and radiometric
characteristics of that sensor that would impact texture in the recorded imagery
are especially highlighted in that section. Analysis procedures required to avoid

scanner artifacts in the texture data are established.

Section Il reviews image texture analysis, contrasts the local and global
approaches, and introduces the concept of a “feature space” (a common term
in pattern recognition). Six mathematical properties of texture measures, which
are be desirable in this study, are described and 25 candidate texture measures
are defined. The desired characteristics serve as the yardstick for evaluating the

candidate texture mecasures.




Section IV presents the first image data set. This data set consists of 64-
x §4-pixel image fragments containing only & single ice type, which has been
determined by prior expert interpretation of the images. Values of the condidate
texture measures are calculated for this image set, and the resulting numerical
values are analyzed to determine to what degree the candidaie texture measures
match the desired characteristics established in the previous section. Gf the 25
candidate texture vsriablee eveluated, only 12 are shown to be suitable for use in
global texture wnalysis, and then only if the mean brightness values are identical
for each texture duss. For textures with varying means, only six texture variables

are found to be useful.

The unmixing of globally calculated textiure data to infer textural compo-
gition of the image utilizes ihe CABDFAC and QMODEL coinputer codes, which
require that the data matrix have constant row sums. Image texture data are
not intrinsically consiant-surn. Seciion V addresses this probiem. A data matrix
transformation, which will put the data into a constant-sum form in a .nan-
ner that reduces the information loss occurring as a result of the constant-sum

formation process, is defined.

Section VI introduces the licear unmixing procedure that is used to infor
image composition from global data. The mathemeiical model for linear unmix-
ing 18 described and the appropriateness of that niodel is evaluated using {cxture
measures calculated for the 64- x 64-pixei, pure ice-iype samples from Section
IV. Once the validity of the linear unmixing model has been established, the pure
samples are “unmixed,” even though they are not mixtures. The compositions
of these image samples should be 100% for the ice class to which they beiong and
0% for all other ice classes. Comparison of the actual compositions calculated by

unrnixing with these known compositions provides the first quantitative estimate
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of the ice-iype discrimination power of global texture ansalysis.

Section VII presents the first analysis of images that contain more than
one ice-type. The mixture images analyzed here are synthetic mixtures created
by mosaicking the single ice-type irnages in various proportions. The unmixing
process is conducted for this synthetic data set. Various techniques arc applied to
select end members for unmixing. The end-member selection techniques ace de-
scribed and compared. Accuracies are calculated for image proportions resulting

from the various techniques.

Section VIII looks toward natural mixtures by using the synthetic mixture
data set to investigate questions pertinent to natural mixtures. These questions
arise because natural textures bave shifts in znean image intensity levels for each
texture class. This shift in means was artificially removed from the synthetic
mixtures analyzed in Section VII. Because of this mean shift, only six texture
measures are suiteble for natural mixture images. The synthetic mixtures are
recreated, this time without adjusting the mean intensity to a uniform velue. The
analysis shows that the reduced number of texture variubles and the differences
in mean levels between texture classes do not significantly degrade unmixing

accuracy.

Section IX contains the analysis of full frame images containing natural
mixtures of ice types. The analysis of natural mixtures in the present study is
limited because of lack of appropriate images in the data set. What work is done

here with natural, full-frame mixture images indicates that root-mean-square

(rms) ice-type proportion errors on the order of 0.05 may be possible for simple,

natural mixtures.

The conclusions of this study are stated in Section X. Recommendations
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are presented for further study to advance the global texture analysis approach.
Recommendations are aiso presented for future ice work using the global tech-

nique. The extension of this approach to synthetic aperture radar (SAR) images

of sea ice is seen as especially significant.




II. K,-BAND RADIOMETRIC MAPPING SYSTEM

The K,-band Radiometric Mapping System (KRMS) is an airborne micro-
wave imager that operates at a center frequency of 33.6 GHz. Important char-
acteristics of the instrument are given in Table II-1. Those characteristics that
pertain to texture analysis of imagery collected by the KRMS are discussed in

this section.

A. SPATIAL SAMPLING

The 1° antenna beamwidth results in a nadir instantaneous field of view
(IFOV) ot 16 ft per 1000 ft of flight altitude. Postacquisition signal processing is
applied to the deta to achieve a cross-track IFOV of 12 ft per 1000 ft of altitude
i the digital imagery (Eppler et al., 1984). All imagery analyzed in the px-'cgent
study was acquired from an aircraft altitude of 5000 ft; the result was a 60-ft

cross-track by 80-ft along-track IFOV in the digital data.

The active scan angle of the KRMS is 100 centered on nadir. The resul-
tant cross-track ground coverage is equal to 2.38 times the altitude, or 11,900 ft
(approximately 2 nmi) for a 5000-ft altitude. If aircraft altitude is low enough
that curvature of the earth can be ignored, then scan geometry for an airborne
scanner is shown in Figure II-1, where 8 is the scan angle relative to nadir, h is
the aircraft eltitude, P is the ground point being sensed, = is the ground distance
from nadir to P, and d is the distance from the sensor to P. Trigorometry leads

to an expression for  as a function of 6 and h.

z = htané. I -1)

If KRMS date were digitized using a constant time interval between sam-
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TABLE II-1. KRMS TECHNICAL CHARACTERISTICS
taken from Eppler et al. (1984)

ANTENNAS
number
diameter
polarization
beamwidth

1solation

SCANNER
rnaximum scan rate
minimum scan rate
scan angle
active scan angle
antenna position accuracy

STABILIZATION

method
accuracy

RF AMPLIFIER
type
noise
bandwidth
gain
loss

RADIOMETER
type
pulse width
locel cacillator frequency
IF bandwidth
video bandwidth
video gain
minimum detectable signal
sensitivity
Jdynamic range

3

24 inches

vertical

1.0°

40 dB (minimum)

25 scans/second
7.5 scans/secend
60° from nadir

50° from nadiz
2.5 minutes if arc

cross-track roll gyro
less than 0.25°

superheterodyne (DSB)
less than 5.0 dB

1.3 GHz

greater than 60 dB

1.2 dB (maximum)

pulse stabilizes, total power
4.0 ms

33.6 GHz

greater than 500 MiHz

1.7 kHz (maximum)

72 dB (nominal)

0.05 K/second

50 mV/K (nominal)

370 K
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ples (which is equivalent to a constant angular interval), the sample interval in
terms of ground distance would not be uniform across the acan line, but would

vary as 9%. Differentiating Eq. (II-1) with respect to 8 yields

dz
£=hsec20. (II -2)
Substituting 6 values of 0° and 50° into Eq. (II-2) shows that the value of %=
varies by a factor of 2.42 from nedir to the end of the scan line. This amount
of variability in sample spacing on the ground would certainly be intolerable in
texture axnalysis where spatial relationships of image intensity are crucial. For-

tunately, the analog-to-digital {A/D) conversion software for the KRMS system

incorporates a nonuniform sampling in time, appropriately chosen to result in

However, another npotential texture analysis problem associated with scan-
ner geometry resuits from the fact that IFOV is a function of 8. At the edge of
the scan the IFOV represents an integration over a much larger ground area than
the IFOV at nadir. Both d and # combine to enlarge the cross-track dimension
of the IFOV in proportion to f—:’—;—. The along-track dirnension of the IFOV is in-
creased in proportion to d which is proportional to (‘%)}. Figure 11-2 compares
the KRMS IFOV at nadir and at the ed. -f the scan. Clearly one would expect
significant loss of high-frequency content in .he image toward the edge of the
scan. The typical KRMS image shown in Figure I-1 exhibits this effect in the

form of a fuzzy or defocused appearance at the image edges.

Each KRMS scan line is digitized into 512 samples. Assuming a 5000-ft
aircraft altitude where the croes-track coverage would be 11,900 ft, the sampling

interval in terms of ground distance between each of the 512 samples in a scan
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line would be 23.3 ft. Comparison of this intersample spacing with the IFOV of
60 ft at nadir shows the data to be oversampled by a factor of 2.58 at nadir. The
cross-track oversampling factor becomes even larger toward the ends of the scan

line where the IFOV increases.

The along-track sampling interval is determined by a comnbination of air-
craft altitude, aircraft ground speed, and antenna rotation rate, all of which can
be adjusted in flight by the KRMS operator. Nominal values for these three
parameters during the acquisition of the KRMS data analyzed here are 5000-ft
altitude, 221-kt ground speed, and 50 ms per scan. Resultant scan line sepa-
ration on the ground is 18.5 ft. This separation, when compared to the 80-ft
alorg-track IFOV, indicates an oversampling factor of 4.32 in the along-track

direction.

The aspect ratio in the KRMS imaogery is not unity. Along-track and
cross-irack sampling intervals of 18.5 ft and 23.3 ft, respectively, result in an
aspect ratio of 1.26, elongated in the along-track direction. One could attempt
to correct the images for aspect ratio, but such a correction would be subject
to uncertainties. Aircraft altitude and speed recorded on the flight log are only
estimates that can vary from the true values. Because of these and other uncer-
tainies (such as aircraft crab angle) in platform attitude and motion, no aspect

ratio correction to the imagery has been attempted.

B. CALIBRATION

The KRMS data is digitized to 12-bit precision resulting in possible dig-
ital values ranging from 0 to 4095. The data have been calibrated by methods

described in Eppler et al. (1984) so that the equation
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Ty = (—0.0276 * digital value) + 248 (II —-3)

can be used tc convert digital image values to brightness temperature, T}, in
Kelvins (K). In the present study it was convenient to work with 8-bit data,
which can assume values ranging from 0 te 255. The 12-bit data were converted
to 8 bits by dropping the four least-significant bits. The calibration equation for

the resulting 8-bit data is

Tb = (—0.4416 * digital value) + 248. (II -4)

The range represented by the 8 bits is unchanged from 12-bit data (135 to 248
K), but the sensitivity in ihe 8-bii daia is reduced to 0.4416 K/digital value
rather than the 0.0276 K/digital value present in the original digital imagery.
The reduced sensitivity of the 8-bit data is more than adequate for the tex-
ture analysis performed here, since the rms noise level in the KRMS duta is
approximately 2.5 K. The four least-significant bits that were dropped therefore
represent temperature sensitivity that is well below the random noise floor in
the data. Note that Eq. (II-4) describes the case where darker shades in the
imagery represent higher radiometric temperatures and lighter shades represent

lower tempceratures.

C. ANTENNA BALANCE

The KRMS scanning systemn consists of three parabolic actennas mounted

120° apart on a single rotating shaft. Thus, one revolution of the shaft produces

three scan lines, one from each of the antennas. Only the downward-looking

antenne is active at any given time. The A/D conversion software for the KRMS
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data contains provisions to compensate for differences in the response charac-
teristics of the three antennas. This compensation is adequate to insure that
scan-line banding is not readily apparent in the images. However, the compen-
sation i1s not perfect and some sensitive texture measures may be affected by the

imbalances within the scan-line triplets.

D. EFFECT OF OBSERVATION ANGLE ON BRIGHTNESS

TEMFPERATURE

The underlying assumption in this study is that changes in the physical
characteristics of the ice pack (e.g., salinity, liquid water content, ice thickness,
deformation, etc.) will produce textured distributions of brightness tempera-
tures, Tp, that can be measured from microwave imagery and utilized to identify
specific ice types. However, superimposed upon these textured Tj distributions
that result from the physical characteristics of the ice, one finds a T}, distribution
resulting from the effect of observation angle. These angular effects can confound
our attempts to produce accurate measures of that component of image texture

related to ice type.

Eppler et al. (1984), and references cited therein, discuss the problem of
observation angle effects on microwave brightness temperatures of sea ice. The
problem can be summarized in simple terms by considering a model treating
the ice as a semi-infinite dielectric slab. The dielectric is assumed to be lossy,
resulting in a complex dielectric constant, e. If we consider only vertically polar-
ized emissions from the surface (the KRMS senses only the vertically polarized
component), the vertical Fresnel coefficient R,(6) for an electromagnetic wave

emerging from the dielectric is:
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_ (ecos 8 —5)
"~ (ecos 8+ S)’

R, () (1 - 5)

where
S =¢€¢—siné.

In the microwave portion of the spectrum, the intensity of the radiation emitted
by a “gray” body is frequency dependent and is proportional to physical temper-
ature Ty. Since the intensity is proportional to the square of the field strength,
we have outside the dielectric (Stogryn, 1970):

Ty(8) = |Ry ()1 Tuhy + (1 — |Ruo(8)]" ) To- (IT —6)
Teky 18 the radivimetric temperature of the sky, which in the microwave poriion
of the spectrum is typically less than 30 K. If we assume that T, is 15 K, €
for ice is (3.15, 0.011) (Stogryn, 1981) and T; is 270 K, then the simple Fresnel
| model of Eq. (II-6) results in the Ty(#) curve shown in Figure II-3. Note that the
model predicts an increase in brightness temperature with increasing scan angle.
The elevation in T}, relative to the nadir value reaches & maximum of 20 K at an
observation angle of approximately 61°. At 30° the model predicts an increase
in T} of approximately 6.4 K. The magnitnde of this temperature elevation with
angle will vary with ice type because the salinity and, therefore, the complex

dielectric constant, varies with the age of the ice.

The KRMS imagery from March 1983 contains a large area of shore-
fast, first-year ice that can be assumed to be isothermal. Eppler et al. (1984)
calculated average T} as a function of scan angle for this isothermal ice field.
Figure 11-3 shows those results along with the theoretical curve from Eq. (II-

6). Close agreement exists between theory and observations because the chosen
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value for ¢ was apparently appropriate for this first-year ice. The conclusion
is that T, distributions will be a linear combination of texture related to ice
type and some limb-warming trend, which is also related to ice type through th
complex dielectric constant in Eq. (I1-6). The procedure to subtract the imb
trend from the KRMS imagery is not straightforward, since the magnitude of the
trend is different for different ice types. Therefore, correction for this ramp has
not been included in the present study. This correction is suggested as a possible

enhancement to future work. Eppler (1987) is studying this problem.

E. KRMS SUMMARY

Characteristics of the KRMS have been discussed here to be certain that
the analysis is undertaken with full recognition of any scanner-related factors
that could have significant impact on the textures of the images recorded by this
instrument. To summarize the factors discussed, the following potential problems

~and possible solutions are listed.

¢ The aspect ratio of the images is 1.26, elongated in the along-track direction.
No correction for aspect ratio has been performed. The problem will be

ignored, but textures will not be isotropic.

¢ Data are oversampled by a factor that ranges from 2.58 to 6.24, depending on
dircction within the image and distance from the image edge. This problem
will be reduced by eliminating the 100 edge pixels on either side of the
image (where the oversampling is most severe) from inclusion in the study.
Excluding these edge pixels reduces the range of the oversampling factor to
2.58 to 4.32. It is noted that this oversampling will result in an absence of
high-frequency content in the imagery. Texture measures associated with

high frequencies are expected to be of no value.
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+ o Fach group of three successive scan lines is sensed through & different an-
tenna. Imbalance in the antenne response characteristics may lead to a
periodic (f = 0.33/pixel) texture artifact in the along-track direction. Tex-
# ture measures will be implemented in such a way that the effects of this

artifact are minimized.

o The images analyzed here are calibrated in terms of microwave brightness
# temperature. Calibration is an advantage for texture analysis because we
can ignore image normalization by histogram equalization or by other means

which are normally required prior to texture analysis (Haralick et al., 1973).

¢ Brightness temperatures increase toward the edge of the scan line because
of the effects of incidence angle. Issues of resolution have led us to discount

'y o
L LLCDT

the 100 edge pixeis on either side of the imagery. The dimination o
edge pixels also minimizes the Lmb warming problem. By ignoring the 100
edge pixels, the remaining image area is observed at an angle of 30° or
less where the limb warming is less severe than at the ends of the scan
line. It is assumed that this cross-track brightness trend can be ignored in
the subsequent texture analysis. This assumpticn would certainly be valid

for texture analysis based on the local neighborhood. However, under the

global approach to texture analysis outlined in Section III, the expected

crose-track trend will undoubtedly have some effect.




II. IMAGE TEXTURE ANALYSIS

Texture is an important factor in the analysis of many types of images.
Despite its importance in image data analysis, & precise mathematical definition
of texture does not exist. Texture has been defined subjectively as the “local
spatial distribution of tonal values within an image” (Haralick et al., 1973), or
the “apparent minute pattern of detail of a given area,” (Hsu, 1979). Because
of the lack of a mathematical definition of texture, it is difficult to pursue a
rigorous, formal approach to texture anaiysis. Texture discrimination techniques
have therefore been described as being, for the most part, ad hoc (Haralick, 1979).
However, two broad classes of textures are generally recognized. These texture

classes are called structured and statistical.

Structured textures are characterized by tcaure primitives and placement
rules. Figure III-1 is an example of of a structured texture. Here the texture
primitive is the pattern TEX, and the placement rule is for a primitive to occur
ot evenly spaced grid points. Structured textures sbound - woven fabric, brick
walls, and wire mesh are typical examples. Structured textures are popular
subjects for study because the primitives and placement rules can be formalized
into grammatical models. Through a small number of rules and symbols the
grammar can gencrate complex textural patterns, The structural approach is
also attractive because it brings some mathematical formealism to bear on the
texture discrimination problem where none exists naturally. For an overview of
the application of grarnmatical models to structured texture analysis, see Ballard

and Brown (1982).
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Figure 11I-1. A simple structured texture constructed using TEX as
the texture primitive and a rectangular grid as the
placement rule,

Textures that cannot be adequately described by primitives and place-
ment rules fall into the statistical class where texture is described by statistical
rules governing the spatial distribution and relation of tonal values, In the field of
remote sensing nearly all natural textures observed in aerial images of the earth
fall into the statistical category. A sample of the KRMS imagery studied in this
investigation wa- shown in Figure I-1. Recall the lack of any structure to the
texture contained in the image. Analysis of these data will, therefore, follow a
statistical approach. Specifically, statisiical pattern recognition is the paradigm
that will be used to explore sea ice textures. There are other statistical methods
of dealing with texture (Pratt et al. 1981), but this study will be confined to the
statistical patiern recognition approach, which seems to be particularly appro-

priate for low-resolution textures guch as those seen in aerial images (Weszka et

al., 1976).

The basic notion of pattern recognition is the “feature vector.” A set of

—

m image measurements, «;, is considered to be a feature vector, X,
X = (231 y L2 ,2!3,...2)m)

in a “feature space” of mn dimensions. For texture analysis the image mea-

surements should, of course, be measures of texture type so that feature vectors
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custer according to the texture from which they were derived. Figure 111-2 shows
examples of effective and ineffective feature eelection. If features can be found
such that the feature vectors cluster by texture type in feature space, then the
methods of statistical pattern recognition can be brought to bear on the image

texture analysis problem.

A. LOCAL AND GLOBAL APPROACHES TO IMAGE TEXTURE

Because texture is usually considered to be the local distribution of tonal
values, most image texture studies teke a local approach to texture analysis.
Under the local approach, one determines the texture class of a given pixel by
exsmining the pixels in 1 neighborhood surrounding the pixel in question. I
one wanted to know the percentage of an image consisting of some texture type,
cach pixel in the image would be classified based on ite neighborhood and then
the number of pixels classified as belonging to a given cdass would be summed.
Exarmples of the local approach are abundent in the literature. For examnple,
Hsu (1979) used boih 3 x 3 and 5 x 5 pixel neighborhoods for texture-based
classification of terrain types in aerial imagery. Holmes et al. (1984} have clas-
sified SAR imagery of sea ice wing ¢ drcular neighborhood with a 5 pixel (1%
m) radius. Fily and Rothrock (1986) used a 15 x 15 pixel neighborhood to dis-
criminate between ice and open water in SAR imagery. Laws (1980) segmented
images based on texture by convolution with small mesks ranging from 3 x 3 to

7 x 7 pixels.

The local approach is not optimal for the sea ice texture analysis at hand.
Consider the image examples shown in Figure 111-3. Each ice type clearly has
a difterent textural appearance. However, if one extracted a 3 x 3 or 5 x 5

pixel neighborhood from the second-year or multiyear ice images, then it would
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obviously not be possible to say with certainty from which image the small image
fragment was taken. The difference between second-year and multiyear ice types
in Figure II1-3 is not some unique neighborhood signature but, rather, the average
number of texture features per unit area over the entire sample. Therefore,
one would expect ice-iype classification accuracy to improve as the size of the
neighborhood increased because the larger neighborhood gives a better statistical
sarapling of the texture per unit area. If larger neighborhoods provide more
accurate texture features, then why not make neighborhoods extremely large?
The limniting factor s that as neighborhoods increase in size, the neighborhoods
no longer contain a single ice type and cassifications become inaccurate because
of ice-type mixtures. Thus, one is faced with the conflicting requirements for
large ncighborhoods for improved stetistics and smeall neighborhoode to insure

single ice types within the neighborhood.

Other investigators have discussed these conflicting requirements for neigh-
borhood size. Conners et al. (1984) encountered this problem in the texture-
based segmentation of aerial photography of urban areas. They found in their
case that an intermediate-sized neighborhood of 145 x 145 pixels was a good
compromise. Weszka et al. (1976) found a 64 x 64 pixel neighborhood size
worked well for the classification of terrain types in Landsat Multispectral Scan-
ner imagery. Another solution to this confiict can be found in linear unmixing
theory combined with a global approach to image texture analysis., Under the
giot:al approach the neighborhood is expanded to include the entire image, thus
yielding the best possible estimate of image texture statistics. Linear unmixing
theory is then applied to the global estimates of image texture measures to deter-
mine the proportions of the various ice types that must be present in the image

in order to yield the observed global image texture feature statistics.
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In summary, then, the local approach is to determine texture class for each
pixel based on its neighborhcod, and then to count the pixels in each category
to determine the percentage of the image covered by a certain texture type. By
contrast, under the global approach, one calculates texture measures based on
the entire image, then applies linear unmixing calculations to the global texture
statistics to find texture proportions in the image. In both cases the desired
result is the same; i.e., proportions of the image covered by each of several
texture classes, but the approach to achieve the result is different for the local

and global cases. This work follows the global approach.

B. DESIRABLE PROPERTIES OF TEXTURE MEASURES

Figure 111-2 showed how effective features should duster in feature space
according to ice type. However, the selection of effective features is more involved
than a simple clustering analysis. It is instructive to consider in more depth the
question, “what texture measures will be effective features”? What properties
are desirable for texture measures? How important are these properties? What
are ihe consequences to the proposed texture analysis if these properties are not
realized? How will the presence or absence of these properties be quantitatively
measured? Answers to these and related questions form the substance of this
section. The properties of texture measures that wiil contribute to the formation
of an effective fenture space are enumerated. Each is discussed with the above

questions in mind.

1. Correlation with Ice Type

Obviously for a texture measure to be useful in the present application,

it must be correlated to sorne degree with the ice type imaged by the KRMS
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scanner. This property has some significant implications. If the texture meas-
ures selected for this study are all at least moderately correlated with ice type,
then the texture measures will, as a consequence, be correlated to a significant
degree with cach other. This expecied correlation between variables means that
the true dimensionality of the multivariate data set will be considerably less
than the number of texture measures, or features, defining the feature sp&ce..
A dimensionality reduction procedure, such as principal components analysis or

factor analysis, is therefore indicated as a logical inclugion in the snalysis.

How is carrelation with ice type to be quaniitatively judged? In this work
correleiion of candidate iexiure measures with ice type will be determined by
perforining a classification of fifty 64 x 64 pixel samples of pure ice types into
first-year, second-year, and multiyear classes based on the texture ineasure in
question. (These 50 samples, called data set A, are discussed in Section 1V.)
The dassification slgorithm employed will be the maximum Bayesian classifier
(Duda and Hart, 1973), which is discussed in Appendix A. The end result of this
classification is a confusion matrix frorn which an overall classification accuracy

can be cslculated (see Appendix A).

2. Multivariate Normality

Although the linear unmixing algorithms (Sect. VI) do not explicitly
require multivariate normality, it is desirable that this property exist in the
texture feature space because several ancillary procedures associated with the
study do require normality. For example, the Bayesian classifier, just mentioned
in comnection with the determination of correlation of texture ineasures with ice
type, s based on the assumption of normality. Therefore, the candidate texture

measures will be examined for normality. Once normality is established, we can
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proceed into various statistical analyses as deemed necessary in the course of the

study without being hindered by concerns about normaility.

Since texture analysis using the feature space paradigin from statistical
pattern recognition is & multivariate problem, the multivariate normality of the
data set is the property actually desired. However, the construction of “good”
overall tests for joint normality of multivetiate data sets has proven to be difficult
for the statistical community (Johnson and Wichern, 1982). Therefore, practi-
cality dictates that for the present data set, examination of normality must be
limited to the waivariate distributions of the individual texture measures. The
drawback of exemining univariate distributions only is that we can never be cer-
tain that we have not missed some nonnormal feature that is only revealed in
higher dimensions. The chances of this happening are apparently small, since
Johnson and Wichern (1982) state the following.

Fortunately, pathological data sets that are normal in lower dimen-
sional representations but nonnormal in higher dimensions have not
frequently been detected.

As a simple means of examining univariate normality, one could create
a histogram of the values of the texture measure in question and examine the
histogrem subjectively for symmetry and for a general “bell- shaped” appearance,
To be quantitative, skew and kurtosis could be calculated to give numerical
velues to histogram symmetry and “peakedness,” respectively. However, more
sophisticated tests are also available. For example, & common technique for
assessing univariste normality is the Q-Q plot, which is a plot of the sample
quantile versus the quantile one would expect to observe if the observations
actually were normally distributed. Appendix B discusses the calculation of Q-

Q plots and gives an example. For a normal distribution the Q-Q plot will be

linear. Departures from linear are therefore a measure of the nonnormality of a
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data set. The linear correlation coefficient of the Q-Q points will be used here

as the criterion of normality.

Several of the texture measures under consideration will be shown to be
normal by the linear Q-Q plot test in Section IV. However, a mathematical trans-
formation of variables will be used in these cases to bring the data sufficiently
close to constant normality. Precise normality is not a critical factor for this

study.

3. Linear Mixing

The approach to texture analysis set forth here requires that image com-
positions be determined by linear unmixing of global estimates of texture vari-
ables. For this approach to be useful, the texture measures selected must mix in
a known manner, which for the present study we require to be linear. By mixing
linearly we mean that if texture measure z; has a value :csl) for a pure sample
frorn Class 1 and a value of a:E”) for a pure sample from Class II, then the value
of z; for a half-and-half mixture of Classes I and II, m£I+”), would be

LI =_v$+ 2"

¢ e (IIT - 1)

1y assess the mixing performance of candidate texture measures, we will
take t{ypical first-year and multiyear ice-image samples and mosaick them to
form a mixture image containing equal proportions of first-year and multiyear
ice. Values of the texture measure in question will be calculated for the individ-
ual first-year and multiyear sanmples, as well as for the combined mixture image.
Based on the values of a given texture measure calculated from the mosaicked
first-year plus multiyear image, the fraction of the combined image occupied by
multiyear ice will be linearly predicted. For a texture variable to be consid-

ered to mix linearly, the proportion of the image linearly predicted (Eq. III-1))
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to contain multiyear ice must fall between 0.4 and 0.6. (The true value is, of
course, 0.5.) The = 0.1 error tolerence is allowed to account for imprecision in
texture measure calculations that result from edge eflects or other factors that

are different between single images and a mosaicked mixture. (Edge efiects are

discussed further in Section IV.)

The linear mixing property for texture measures is absolutely essential in
the present study because the global approach to texture analysis depends on
the ability to unmix globally derived texture data. As the study proceeded, the
linear mixing requirement proved to be a major roadblock. Section IV will show
that only 6 of the 25 texture variables considered behaved linearly in mixtures.
Thus, dealing with nonbinear . pr,, cehavior became one of the major study
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an advantage to the unmixing analysis employed here. Such natural constant
sum texture variables are not out of the question. For example, if one would
calculate the energy spectrum of an image and then use the percent of total
energy contained in spectral “bins” as texture measures, the result would be

constant sum feature vectors, since the sum of the energy in all bins would be

100% for every sample.

Although some texture measures, such as the energy binning just pro-
sosed, may be naturally constant sum, the majority of the texture measures
commonly used are not. If the constant sum requirement could be circumvented,
then this study would not need to be limited to the small subset of texture meas-
ures that provide natural constant sums. One could, of course, scale data vectors
so that the sum of the components is forced to the desired sum. However, in
doing so the ice-type information in the data set may be lost. Thus, a careful
look at the constant sum problem is required. Section V contains an in-depth

treatment of this topic.

5. Invariance tinder Linear Transformation

A desirable but nonessential characteristic of image texture ﬁxeasures is
that they be invariant under linear transformations of the image intensity values.
This property is desirable because it would result in texture analysis algorithms
that are independent of sensor calibration or scene illumination. Without invari-
ance to linear transformations of fmage intensities, the form of texture algorithms
may be universal from one data set to another, but the numeric values of the
coefficients or parameters will change for every data set. In that case, one is
faced with the requirement to “train” the texture analysis algorithms on every

data set, or possibly even “retrain” during a single experiment to compensate
po 8 8
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for drift in sensor calibration. Environmental factors such as atmospheric haze
can also introduce linear gain and offset factors into recorded image intensities,
requiring “retraining” to compensate for environmental variability. Obviously,
the invariance characteristic is highly desirable in general, but texture analysis
can still be effectively performed in its absence. A few of the texture measures

examined in this study will be shown to be invariant; the majority are not.

The invariance of some of the texture measures could be proven analyti-
cally. In other cases the proof must be empirical by means of calculations from
actual images before and after a linear transformation is performed. Since some
texture measures require examination by empirical means, the analytical proofs
have been ignored and all candidate texture measures have been evaluated for
invarience based on calculaiious frow a tesi image. The invariance {es! was con-
ducted using a multiyear sample from data set A (see Section IV). Let I(s,l)
represent the intensity of a test image pixel taken from a location indicated by
sample number s and line number i. A new, linearly transformed test image with

intensity values I'(s,!), formed from I(s,i} according to
I'(s,i) == al(s,l) + b, (II1 - 3)

where a is the gain and b is the offset values of a linear transformation. For
the test of invariance applied to data set A in Section 1V, the values a = 0.8
and b = —20 were used. The texture rneasure in queetion was calculated for
the original image and also for the transformed imeage. If the two values agreed
within the limits of precision on the calculation, then the texture measure is

jabeled as invariant.

So few of the texture measures examined were invariant that the nonin-

variant measures could not be eliminated from consideration in this study. The
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information on invariance of candidate texture measures is therefore included in
Section IV only as useful information to the reader who may be considering these

texture measures in some other context than the present study.

Since all data analyzed here were obtained during a single flight and since
the KRMS has proven to be very stable in calibration over the duration of a
flight (Eppler, 1987), the invariance properties of texture measures are not of
concern here. Such techniques as histogram equalization, which are commonly
applied to remove calibration or illumination variability prior to texture analysis
(Haralick et al., 1973), were not applied to this data set. The reader is cautioned

that numerical results from this experiment can not be transferred directly to

other data sets.

6. Computational Simplicity

Computational simplicity is always a desirable property for texture meas-
ures. In applications of texture analysis to large data sets or in real-time applica-
tions, computational simplicity may emerge as the most desirable of all proper-
ties. However, in the present research work with small data sets, computational

simplicity is of no consequence. This factor is therefore ignored.

C. CANDIDATE TEXTURE MEASURES

Twenty-five texture measures were considered for inclusion in this study.

These measures fell into the following general classes.

o first-order statistics

o measures derived from the gray level co-occurrence matrix (second-order

statistics)
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e Laws’ masks (energy spectrum partitioning)
o gradient analysis
e run length

Representative image texturec measures were selected from each of these
five groups for a total of 25 texture measures to serve as candidates for inclusion
in this ice classification study. This section will describe the candidate texture

measures,

The candidate texture measures examined here were selected because they
appeared to be the measures most frequently appearing in the literature or be-
cause they seemed especially appropriate for sea ice textures. However, numerous
texture measures not considered in the present study have also been reporied in
the literature. Some examples are given below of work on texture measures that

have been reported in the literature but not included here.

Texture signatures have been generated using gray-level generalizations
of binary “shrink” and “expand” operaters (Werman and Peleg, 1985). Har-
wood et al. (1985) studied rank correlation between a standard “rank mask”
and a “ranked local neighborhood.” This method is similar to convolution with
Laws maske, except that the mask and the local neighborhood are converted
to ranked form. Ranking is claimed to result in a more robust lexture analysis
becnuse local order statistics are unaffected by local sample differences due to
monotonic shifts of texture gray values and are less sensitive to noise. Peet and
Sahota (1985) have drawn upon classical difterential geometry by considering the
intensity values of an image to form a three-dimensional surface. Measures of
local surface curvature, such as the Gaussian curvature or the mean curvature,

are applied to texture discrimination. Davis et al. (1979) analyze texture by
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replacing the texture with another image that indicates the positions of certain
local texture properties, e.g., of edges in the original image. Local maxima are
then located in the transformed image and & generalized co-occurrence matrix
is defined that will capture the importanti spatial properties of these local max-
ima. Davis et al. (1979) concluded that generalized co-occurrence matrices are
useful in distingnishing macro textures that are not satisfactorily distinguishable
using features derived from conventional co-occurrence matrices. These exam-
ples, and many other texture measuies not mentioned here, may be useful for ice
classification, but it was necessary in this first work on unmixing global texture
measurements to imit the candidate texture measures to a manageable number.
The 25 texture measures considered are believed to be representative, but they

are not necessarily an optimal selection.

1. First-Osder Statistics

The first-order statistical quantities, mean, variance, skew, and kurtosis,
will be considered as possible texture measures. These distributional parameters
are not normally considered good texture measures because first-order statistics
are invariant to rearrangement of pixel locations. An image with given first-order
statistics can be scrambled randomly or by design into any possible spatial ar-
rangement of pixels and the values of the first-order statistics remain unchanged.
Since texture is “the local spatial distribution of tonal values within an iniage”
(Harelick, 1979), texture measures that don’t reflect differences in local spatial
distributions are not strictly texture measures. Nevertheless, first-order statistics

are often used in texturc analysis (e.g., Laws, 1980).

Holmes et al. (1984) and Lyden et al. (1984) specifically use first-order

statistics in connection with ice-type classification in synthetic aperture radar
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(SAR) imagery. Lyden et al. (1984) observed that for X-barnd SAR with hor-
izontal polarization on both transmitter and receiver, the image statistics for
first-year ice may be distributed differenctly than for multiyear ice. Image in-
tensity values for first-year ice are approximated by a Rayleigh distribution, but
the multiyear ice backscatter is more nearly normal. This suggests that ice types
could be classified by means of their distributional characteristics. Distribution
differences observed in radar images (backscatter) do not necessarily appear in
KRMS images (emissive). However, because of Kirchofl’s Law, which relates
reflectance to absorptance, enough similarity between active and passive sea ice
imagery would be expected to justify including these first-order statistics in the
present study. The study will subsequently show that one of these first-order
statistics, mean intensity value (or mean brightness temperature), is essential
to distinguishing second-year ice from a half-and-half mixture of first-year and

maltiyear ice.

The mean, u, of a sample is given by (Dixon and Massey, 1983)

S L
1
B o= -ﬁ)_l}:f(s,z), (111 - 4)
=1 I=1
where S and L are the total number of samples and lines in the image. If we

define g to be the i** central moment about the mean, y; is given by (Bury,

1975)

L
pio= gz 30 YU, d)  w) (11 - 5)

=1 |=1

Of course, the first central moment, p; is always zero. For + = 2, p; reduces to
the well-known equation for sample variance (Dixon and Massey, 1983). Skew, a
mcasure of the symmetry of the distribution, and kurtosis, a measure of peaked-

ness of the distribution, are calculated from the third and fourth central moments
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as follows.

3 -
skew = —5'/—2' (III - b)
2
kurtosis = I"_; (II1I-7)
#2

The mean, the variance, and the kurtosis aiways assume positive values for image
data, where I(s,!) is always positive. Skew can assume either positive or negative
values. To avoid dealing with negative numbers, skew values here have been offset
by +3. Therefore, what we call skew is actually (skew + 3). Texture variables
derived from these first-order statistics will be called MEAN, VAR, SKEW, and
KURT from this point forward.

2. Gray Level Co-occurrence Matrix

The gray-level co-occurrence (GLC) matrix, P;;, is an array of second-
order probabilities. The 1,7 element is the probability of finding a pixel with
gray level j at some given spatial offset, 5, fromn a pixel with gray-level intensity
value 1. A mimber of GLC matrices caz bz calculated for a given image. Fach
possible value of 5gjves rise to an individuat GLC matrix. In digiial imnagery we
can express the displacement as a two-component vector, where one component
in the samples (columns) direction has a megnitude of mAs, and one component

in the lines (rows) direction hes a magnitude of nAl.
§ == (mbs,nAl), (I11 — 8)

where m and n are integers wnd As and Al are the sempling intervals in the
samples and lines directions, respectively. It is therefore convenient to cousider

the GLC matrix to be a four-dimensional arrey, ¥ ;v n-

GLC maltrices contain various types of texture-related information. For

exainple, the GLC matrix obviously contains edge information. If an image is




uniforin, the ¢ and 7 intensity values at the ends of the displacement vector
will always be nearly equal, thus contributing to larger probabilities in the near-
diagonal elements of the GLC matrix. Conversely, displacement vectors spanning
edges link 1,7 values that are significantly different, thus increasing the values of
the probabilities in the off-diagonal elements of the GLC matrix. The ratio of
the velues of the nesr-diagonsl to off-diagonal elements of the matrix therefore

are a measure of “edginess.”

The GLC metrix also contains first-order statistics. If the rows or volumns
of the GLC matrix are summmed, then the result is the histogram of the image
from which all of the first-order statistics discussed could be derived. Texture
meesures derived from the GLC matrix are, therefore, redundant to some degree

vith the firet-order statistics.

Shape information is also contained in the GLC matrix. To illustrate this
fact, consider the binary images of the ietters T and L shown in Figure 11I-4,
along with their corresponding GLC matrices for § = (—As, Al). Note that these
two images have identical histograms (first-order statistics) and the same number
of edge points, yet the GLC matrices are different. This difference between GLC
matrices for the letters T and L is attributed by Trivedi and Harlow (1985) to the

fact that the GJ.C matrices contein at leazt some rudimentary shape information.

With first-order statistics, edge information, and shape inforrnation in-
fluencing the distribution of second-order probabilities within the GLC matrix,
the GLC matrix is obviously affected by the local distribution of gray shades
within an image, and therefore offers promise for texture analysis. Second-order
probabilities have a long histery in aseociation with texture analysis. Physiol-

ogists studying the human visuval system suggested long ago that second-order
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gray level probabilities are what the human vision systeimn is actually detecting
in visual perception of texture. Julesz (1962) stated what subsequently became

known as the Julesz Conjecture:

Second-order gray level probabilities could match at least the prim-
itive level of human texture perception.

Stating the Julesz Conjecture in more mathematical terms, we would say that
a necessary condition for two textures to be visually discriminable is that they

have different second-order probabilities.

The Julesz Conjecture stoed for several years, but eventually papers ap-
peared presenting counterexamples to this conjecture. That is, textures were
synthesized that had identica! second-order probabilities, yet were visually dis-
cernible. Some of the early counterexamples were not very convincing, since they
were barely discernible to the human visual sysiem. However, quiie disiinct ex-
amples were eventually found. Figure II1-5 is an example of two visually distinct

textures that have identical second-order probabilities.

Gagalowicz (1979, 1981) salvaged the Julesz Conjecture by announcing a

revision. Harlow and Conners (1983) etate this revision as follows:

A necessary condition for two textures to be discriminable is that
they have different local second order probabilities computed over
a small region of the image.

This revision, which specified local second-order probabilities, hus served to main-
tain the idea that the GLC matrix contains sufficient information to allow clese
match with the human level of texture perception. Therefore, the texture meas-
ures derived from the GLC matrix appear to be the most widely used texture
measures, The GLC matrices themselves are very unwieldy. For 8-bit digital
imagery, where the number of possible gray levels, L, is 256, an individual GL.C
matrix would be dimensioned 256 x 256. It would be difficult io find texture-
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related differences in the values of these 65,536 individual matrix elements. The
customary approach is, therefore, to work with “texture measures” derived from
the GLC matrix rather than with the matrix elements themselves. Haralick et
al. (1973) wrote the classical paper defining texture measures derived from the
GLC matrix. He called the GLC matrix the Gray Tone Spatial Dependence
Matrix. This paper defined 14 texture measures calculated by various weighted
combinations of the GLC matrix elements. Some of these texture measures have
found widespread use; others appear to have never been used after the original
paper. Other authorz, such as Conners (1979), have proposed additional texture
measures fron: the GL.C matrix. The cluster promir. 2nce measure that follows is

one measure that came from Conners’ (1979) work.

Six of the most widely accepted GLC matrix-based texture measures have

been included in this study and are listed below, along with their definitions.

L-1L-1
inﬂ’rtia(m,n) = z Z("’ - j)z‘Pi,j,m,n
=0 i=0
L-1L-1
cluster prominence(m,n) = Z Z(, 45—t = 1) Pijmem
1=0 =0
L-1L 1

local homogeneity(m,n) = Z Z

=0 =0

L—-1L-1

energy(m,n) = ZZ H,jmmn

=0 =0
L-1L-1
entropy(m,n) = E Z P; j mnn(P(i,5,m,n))
=0 1i=0
L-11L-1

correlation(m,n) = Z Z (i — )3 — 1j)Pijmmn

g:0;

T+ —J)“) P
(III --9)

]
=0 1=0
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where
L-1L-1

B = Z Z 1P immn

1=0 =0

L-1L-1

B = E iji,j,m,n

$=0 =0

L-1L-1

0‘2 = E Z(i - p"')z'P"rJ.imv“
=0 i=0 ’
L-1L-1

0? = z E(J - “j)zl)i,j,m,n-

t=0 =0

Naming of these texture features is not consistent between authors. For example,
what we call inertia and local homogeneity, Haralick et al. (1973) called contrast
and inverse difference moment, respectively. The names used here are consistent

with more recent work, such as Ballard and Brown (1982) and Trivedi and Harlow

(1985).

In addition to the selection of these six texture measures, the displacement
vectors to be used for calculation of GLC matrices also must be considered.
For some texture measures, maximum ice-type discrimination occurs using large
displacement vectors; for other texture measures, small displacements give better
results. Figure II11-6 shows the inertia measure for three representative samples
of first-year (FY), second-year (SY), and multiyear (MY) ice as a funciion of
the length of g(m,n). In this case maximum ice-type separation occurs for large
displacement lengths. Figure III-7 shows the correlation measure as a function
of displacement vector length for the same three representative samples used for
Figure III-6. In the case of the correlation measure the best separation of ice-
types results at small displacement vector lengths. To cover both of these cases,

we have utilized both short and long displacement vector lengths in this study.

Note in Figures I1I-6 and III-7 that several of the curves have a ripple
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FIGURE I1I-6. The GLC matrix—based inertia texture measure as a
function of displacement vector length for three typical
128 x 128 pixel samples of FY, SY, and MY ice.
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with a period of three pixels. The npple is the result of imbalance between
the three antennas in the KRMS scanner. Yor displacement vectors with along-
track components, which are multiples of three, both ends of the displacement
vector cover pixels sensed by the same antenna. For along-track displacement
components, which are not multiples of three, the two pixels located at the
ends of the vector are sensed by different antennae, in which case the texture
information is corrupted by a contribution from antenna-to-antenna imbalance.
It is obviously better, then, to use only displacement vector lengths that are
multiples of three in the along-track direction. For this reason we have selected
displacement vector lengths of 3 and 15 pixels to serve as the short and long
dieplacement values, respectively. Each of the six GLC matrix-based texture
measuics was calculated for both of these displacements. The result is a total of

12 texture measures based on GLC matrix calculations.

For a given displacement vector length twe GLC matrices were calculated,
one with § in the samples direction and the other with §in the lines direction. The
value of the texture meazure utilized in subsequent texture analysis is the average
of these two values. For example the inertia texture measure for displacement

vector length, k is given by

inertia(kAs,0) + wnertia(0, kAl)
5 .

inertia(k) = (IIT - 10)

Although texture measures derived from the second-order probabilities
contained within the GLC matrix are widely used for texture analysis, the only
previous work known ic the author where these texture measures were applied
to ice-type discrimination is that of Holmes et al. (1984). This previoue study

involved the use of the entropy and inertia. measures to classify sea-ice types in

SAR imagery.




The GLC matrix-based texture measures listed in Eq. (311-9) will be
given the variable names INR3, PR3, HOM3, ENG3, ENT3, and COR3 when
calculated with a displacement vector length of three pixels. The names INR15,
FR15, HOM15, ENG15, ENT15, and COR15 will be used when cal:ulations

utilize a 15-pixel displacement vector length.

3. Laws’ Masks

Laws (1980) proposed a tet of spatial domain convolution filters, the out-
put of which he used to classify an image texture data set with better accuracy
than could be achieved with GLC-based texture measures. The Laws method
will be shown as simply an image domain implementation of the old idea of
vower spectrum partitioning. Laws’ approach to energy partitioning will be fol-
lowed here for the calculation of image texture r easures related to the frequency

distribution of image energy.

If texture is the local distribution of intensity values within an image,
then differences of texture will clearly be reflected in the two-dimensional power
spectrum of the image. To look at spectral distribution differences, some investi-
gators work with the power spectrum while others work with the autocorrelation
function of the image. These approaches are equivalent, since the autocorrelation
function and the power spectrum form a Fourier transform pair according to the

well-known autocorrelation theorem (Bracewell, 1965).

Of those who work in the spatial-frequency domain, some search the
Fourier space directly for features in the power spectrum that can be related
to image texture. For example, Bajscy and Lieberman (1974, 1976) determined

that blob-like textures tend to have peaks in the power spectrum at radii com-

parable to the size of the blobs. A more common approach to spatial-frequency




content analysis is to partition Fourier space into bins. Two kinds of bins, ra-
dial and angular, are often used. It is well known that the radial distribution of
values in the power spectrum is sensitive to texture coarseness. A coarse texture
will resuit in high values concentrated near the origin of the spectrum, but a fine
texture generates an energy spectrum that will be more spread out. Similarly,
it is well known that the argular distribution of values in the power spectrum is
sensitive to directionality of the texture. A texture with many edges or lines in &
given direction, @ , will have high spectral energy values concentrated around the
direction & + (7/2) from the origin of the spectrum. Thus, a good set of texture
measures reflecting coarseness and directionality could be expected from measur-
ing the energy content in a set of radial and/or angular bins within the Fourier
power spectrum of the image. Lendaris and Stanley (1969; 1970) used Fourier
spectrum partitioning to discriminate between natural and man-made scenes in
low-altitude photographs. Weszka et al. (1976) also apply Fourier power spectral

analysis to terrain classification.

In general, texture featurcs based on Fourier power spectra are consid-
ered to perforrn more poorly than features based on second-order, gray-ievel
co-occurrence statistics (Haralick, 1979). Ilowever, Laws (1980) reports that
his “texture energy” method performed better than GLC matrix-based texture
features on the Brodatz (1966) texture set he used. This study will show that
the texture energy measures generated by Laws’ masks yield nearly equivalent

performance to the GLC texture measures here in the case of ice textures.

Laws (1980) proposed the three sets of one-dimensional convolution masks
shown in Figure I[1-8. The logic leading to the selection of these masks is not
obvious. These masks do have some interesting characteristics. Each mask is

weighted more heavily toward the center; all are either symmetric or antisymetric,
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® THIRD-ORDER MASKS:
n 2 1j
10 [-1 0 1]
[-1 2 -1!
: - FIFTH-ORDER MASKS:

(1 4 6 4 1)
-1 -2 0 2 i

[
(<1 0 2 0 —-1]
(-1 2 0 —2 1]
(1 -4 6 -4 1]
)
SEVENTH-ORDER MASKS:
{1 6 15 20 15 6 1]
(-1 —4 -5 0 5 4 1]
[-1 -2 1 4 1 -2 -1]
(-1 0 3 0 -3 0 1]
| 1 -2 -1 4 -1 -2 1]
(1 -4 5 0 -5 4 —1]
[-1 6 —15 20 -15 6 -1]
g e

Figure 111-8. Center-weighted vector masks (Leaws, 1980).
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and all but the first mask of each order sre zero sum. The center-weighted
aspect of these masks is ideal for a spatial convolution filter because the tapered
ends avoid severe frequency domain sidelobes that result from box-car-truncated,
spatial domain convolution filters. Laws states that the vectors formed by the

mask coefficients are independent within each order, but are not orthogonal.

The third-order masks form the basis for the higher-order masks. Each
fifth-order mask can be generated by convolving two of the third-order masks.
The seventh-order masks can be generated by convolving a third-order mask with
a fifth-order mask, or by twice convolving third-order masks. Note that the third-
order masks contain the polynomial coeflicients of the products (a + b)(a + b),
(a + b)(a —b), and (e — b)(a — b). Actually, all of the masks can be generated

4 5 M 3 - S . iy P DY S} AL __
directly from o binomial cxpansion of an appropriate number of terms rather

Laws (1980) generated two-dimensional masks by forming vector cross
products of the one-dimeneional masks. In the present study we have convolved
the images twice with a one-dimensional mask rather than form cross-product
matrix masks. The vector mask ie applied first as a horizontal kernel, and then
the output of that operation is convolved with the vector mask applied as a
vertical kernel. Double application of vector masks in this fashion produces
results identical to a single convolution with a cross-product matrix kernel. The
reason for double application of a one-dimensional mask is to avoid the chore
of entering all of the elements of a large matrix kernel into the computer. The
resulting energy binning is therefore in the form of two-dimensional rings of
verying radii in the image energy spectrum. Radii of the rings will be the same
as the distance of the peak in the mask Fourier transforms from the origin of the

plots in Figures 111-9 or I1i-11.
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We now proceed to establish the fact that the variance of the images
resulting from convolutions with Laws’ masks are actually the values of image
energy falling in a series of spectral bins. Consider the seventh-order masks given
in Figure I11-8. Each of these masks has beer Fouri=r transformed to obtain its
frequency domain equivalent. The Fourier transform squared (energy spectrum)
for each of the masks is shown in Figure III-9. Note that the spectra associated
with these masks are narrow-banded with center frequencies ranging from DC
to the Nyquist frequency, fn, as the mask numbers go from 1 to 7. Referring
to the convolution theorem (Bracewell, 1965) we note that the convolution of
the image with the mask is equivalent to multiplying the Fourier transfona of
the image by the Fourier transform of the mask. It is obvious from the narrow-
banded nature of the Fourier transforms of the mask that any such frequency-
domain product would contain significant non-zerc values in only a Emited range
of frequencies. Thus, convolution with a Laws’ mask is equivaient to applying
a band-paues filter to the image. The variance of the image output from the
convolution operation is, then, the energy in the original image that falls within
the bandpass of the convolution fiiter. Therefore, the Laws’ mask texture energy

measures are nothing more that a simple spectral binning of the image contents.

In Section II it was established that the oversampling of the KRMS im-
agery precluded any high-frequency conient in the iimages. We do nol expect
any useful ice discrimination information at frequencies nbove fn /3. Therefore,
of the 7 energy bins resulting from the seventh-order Laws’ masks, only masks 1
and 2 are expected to contain anything other than random noise. A preferable
arrangement for the KRMS image data would be to locate our 7 spectral bins
to span the range from DC to fn/3. To perform this arrangement, Laws’ masks

of 21st ordz. can be constructed and only the first seven used. Such masks have
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FIGURE I1i-9. Normaulized energy density spectra (Fourier transform
?ﬂugred) of the seventh—order masks shown in Figure
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been constructed by repeated convolutions of the appropriate lower-order masks.
Figure III-10 lists the first 7 of the 21st order masks. Energy spectra of these

selected 21st order masks are plotied in Figure I1I-11.

Figure III-12 shows a typical sample of KRMS imagery over multiyear ice
and the result of convolving the masks listed in Figure I1I-10 with this sample
image. Fach of the convolution results has been individually enhanced to show
whatever features may be present in that particular image. Absolute comparisons
between the various filter outputs are, therefore, not possible. However, what
is obvious is the transition from lower-to-higher frequency content for masks 1
through 7. This transition visually demonstrates the frequency-binning proper-
ties that have been attributed to these masks. The “basketweave” texture in
hie higher-frequency filter cuipuls appeared ac a surprive. A definitive expla-
nation of this appearance is not available. It seems obvious that these paiterns
are not related to the ice scene imaged by the KRMS, but are artifacts of some
type of ccherent noise within the KRMS system. It is unfortunate thai these
higher-frequency bins are dominated by this noise, which would be expected to
completely mask any ice texture information that might be available in these
spectral bins. However, we will carry all 7 Laws’ mask texture energy variables
forward as candidate texture measures on the outside chance that some useful

ice-type information may actually be present.

The 7 texture energy values associated with the 21st order masks given

in Figure 1I1I-10 will be carried into the ice-texture analysis as candidate texture

measures. These meagures will be named LM1 through LM?7.

4. Gradient Analysis

Rosenfeld and Thurston (1971) have considered texture in terms of the
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21st ORDER MASKS:

RN
2 18 ~16 14 12 ~10 -8
190 152 ~118 88 62 —40 | | —22
1140 798 —528 322 172 ~76 ~8
4845 2907 ~1581 731 237 5 83
15504 7752 —3264 | | 952 ~16 248 160
38760 | | 15504 | | —2488 | | 272 —664 | | 400 -8
77520 | | 23256 | | -3264 | | —1496 | | ~1104 40 352
125970 | | 25194 1326 | | 3004 | | —494 | | -650 | | —338
167960 | | 16796 7072 | | 2652 936 —780 | | 208
184756 0 9724 0 1716 0 572
167960 | | —16796 | | 7072 2652 936 780 208
125970 | | —25194 | | 1326 3094 —a04 | | 650 | | —338
71520 | | 23256 | | ~3264 1 | 1496 | | —1104 | | —40 | | —352
38760 | | —15504 | | —4488 | | —272 | | —664 | | ~400| | —8
15504 | | —7752 | | —3264 | | —952 ~16 | | 248 | 160
4845 —2907 | | —1581 | | —731 237 5 83
1140 ~798 —528 | | —a22 172 70 -8
190 ~152 ~118 —88 62 40 —22
20 —18 16 ~14 12 10 -8
1 JL =1 JL it )0l v Jb )Ll

Figure 111-10. Center-weighted vector masks.
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amount of “edge” per unit image area. An edge can be detected by a variety of
local mathematical operators, which essentially measure some property related to
the gradient of the image intensity function. Rosenfeld and Thurston (1971) used

the average Roberts gradient over a neighborhood as a measure of texture. Other

investigators have used the second derivative of the image intensity function for

texture analysis. The second derivative appzoach is actually the gradient of the
gradient. Triendl (1972} used the Laplacian operator to approximate the second
derivative of the image and then extracted texture parameters from a smoothed

version of the second derivative image.

In addition to the straightforward use of gradients or gradients of gradi-
ents, more elaborate forms of gradient analysis have been proposed. Landeweerd
and Gelsema (1978) generated textural parameters from the histogram of the
gradient image. Rosenfeld (1975) used a double gradient approach. He gener-
ated an image whose intensily is proporiional to the edge per unit area of the
original image. Then the edge density image is further processed by additional

gradient analysis prior to textural feature extraction.

Here, a simple edge density approach weas chosen to generate a texture
measure representing the gradient anelysis category of texture measures. An
edge detection operator is applied to the image; the result is a gradient image.
The mean intensity of the entire gradient image is then taken to be a global
measure of the average edge per pixel. The edge operator chosen consists of
spatial convolution with an edge detection mask. A number of edge detection
convolution kernels have been developed. The mask chosen here is the Pre-
witt operator (Prewitt, 1970). This operator was chosen because the edges in
the KRMS imagery tend to be smooth, ramp-like transitions rather than sharp

discontinuities, Nashburg and Lineberry (1981) have shown that the Prewitt
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operator maximizes the output signal-to-noise ratio for uniform slope edges cor-
rupted by additive Gaussian noise. It is also less sensitive than the more common

Sobel and Roberts operators to noise of any variance (Hayden et al., 1987).

The Prewitt operator consists of a pair of convolution kernels for obtaining
the z and y components of the gradient of the image intensity function. These
components, g-(s,!) and g, (s,!), are obtained via convolution of the image with

the following kerrels.

From the g.(s,!) and g,(s,!) images we can form a gradient magnitude image,

g(s,1), according to

g(s, 1) = \/g,(a,l)"' + gy (s,0)3. (IIT —11)
- The mean intensity of the Prewitt gradient magnitude image is incorporated into
the global texture analysis under the name EDEN for edge density. Figure 111-13
shows the Prewitt edge magnitude images for typical KRMS images of first-year
and multiyear ice. The difference in mean brightness of these edge images is

apparent.

5. Run Length

The run, defined as a maximal-connected colinear sct of pixels, all with
the same intensity value, can be a useful texture measure. Various parameters
associated with runs could include the length of the run, gray-level value of the
run, or angular orientation of the run. Galloway (1975), Weszke et al. (1976),
Maleson et al. (1977), end Werman and Peleg (1985) have used various combi-

nations of these parameters associated with gray-level runs for texture analysis.
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FIGURE 111-13. Representative KRMS images of first—-year and multi-
year ice (left) with their corresponding edge magnitude
images (right) formed by convolution of the image with
the Prewitt edge operators. Edge magnitude shown here
is formed from both the x and y edge components
according to Eq. II1-11.
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Gray-level run parameters are not expected to be good messures of texture
for KRMS data because of the high noise levels with respect to scene cuatrast. In
oiiier words, because of the noise in the imagery, adjacent pixels in the image are
very seldom at the same intensity level, even if the scene is uniform. Therefore,
most gray-level run lengths in the image would be 1, and this length is & measure
of the system noise, not the texture in the scene. However, the gray-level imag=

might be converted into a binary image by thresholding the image at its mean

value. That is, all pixels with intensity velues above the mran are assigned a
brightness vaiue of 1 and all pixels with intensity below the mean are assigned a
brightness value of 0. In this binary image one could argue that tkz run lengths

might reveel useful ice-type information, as follows.

For first-year ice, which has a very uniform scene brighiness, intensily
levels would be expected to shift back and forth around the mean on a pixel-to-
pixel basie. The expected value of run length in this case would be small, perhaps

two pixels or less on the average. However, with multiyear ice, both ridges and

melt ponds produce paiches of higher or lower intensity in the KRMS imagery.
These patches may create areas within the image where all pixels remain above
or below ihe the mean brightness temperature, creating uniform patches of 0s
and 1s over large areas. The mean run length in this case would be expected
to be signihcantly larger than was the case for the more uniform first-year ice.
This expectation is somewhat contrary to intuition, which tells us that tlie more
uniform ice would contain longer run lengths than the patchy ice. However, it ..
is the noise level and the thresholding into a binary image, combined with scene
uniformity, that determines mean run length within this type of thresholded
image. When these three faciors operate in concert, uniform scenes result it ~h

shorter binary run lengths than do patchy scenes as shown in Figure Ili-14.
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FIGURE III-14. Representative KRMS images of first-year and multi-
ear ice (left) with their corresponding binary images
{right) formed by thresholding the irnage at jts mean
intensity value.
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Therefore, the mean binary run length (MBRL) of KRMS images thresholded at

their mean value has been included as a candidate texture measure.

Two values of MBRL are calculated for a given image sample. One value
is for runs in the samples direction and the other for runs in the lines direction.
The MBRL value passed into the texture studies is the arithmetical mean of
the values computed individually for the two directions. MBRL values vary
ccnsiderably in these images as a function of direction. This variability is not
believed to be an indication of anisotropy in the image texture but, rather, an
artifact resulting from the KRMS antenna-to-antenna imbalance described in
Section II. MBRL values, therefore, are consistently lower in the lines direction
than in the samples direction. However, in the lines direction MBRL is still
correlated with ice type, so that averaging the two directional calculations of

MBRL produces useful texture measures for ice-type discrimination.

6. Summary of Candidate Texture Measures

Twenty-five texture measures have beei described here as candidates for
use in discrimination of sea-ice tynes. These candidates will be carried forward
into the texture analysis, where soiie will be eliminated after evaluation on ice
image data according to the criteria eetablished for texture measures at the be-

grnmng of this section. Table I1I-1 summarizes these candidate texture measures,
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TABLE @TI1I-1. CANDIDATE IMAGE TEXTURE MEASURES

first-order statistics

mean MEAN
variance VAR

skew SKEW
kurtosis KURT

second-order statistics (GLC matrix)

inertia INK3, INR15
cluster prorninence PR3, PR15
loce' homogeneity HOM3, HOM15
energy ENG3, ENG15
entropy ENT3, ENT15
correlation COR3, COR1S

Laws’ masks (spectral binning)

lowest frequency bin IMi1
° LM2
v LM3
. LM4
. LMb
L] IJMG
highest frequency bin LM7
edps 7 sty
menn Prewitt edge magnitud= EDEN

run length

mean binary run length MBRIL




IV. THE TEXTURE ANALYSIS DATA SET

To determine if the candidate texture measures described in Section UI-C
possess the properties listed as desirable in Section III-B, a set of filty 64 x 64
pixel sample images were extracted from the available KRMS imagery. These

50 samples, referred to henceforth as data set A, are described in this section.

Values of the candidate texture measures will be calculated for each of the 50
sample images. Texture measures are then evaluated and discussed according to

the criteria established in Section III

A. KRMS SAMPLE IMAGES EXTRACTED AS DATA SET A

Each of the sampie ':-I:Tuc_ 's in data set A contain a single ice-type. The
ice types were determined by visual interpretation of the KRMS images and
ccincident serial photographs (Eppler ond Farmer, 1983). First-year, second-
year, and multiyear ice are the only ice types contained in the KRMS imagery in
adequate amcunis to yield reliable texture svatisiics. The World Meteorological
Organization (WMO, 1878) combines these three categories into only two: first-
year ice and old ice. First-year ice is ice of not more than one winter's growth
that ranges in thickness fron 30 cm to 2 m. Old ice is ice that has survivad at
- least onc sumuner’s melt and commonly rangee in thickness from 2 to 4 m. For

this ~tudy the old-ice category has been divided into second year and multiyear.
Second-yesr ice has survived one summer’s melt. Multiyear ice has survived
more than one summer’s melt. ‘T'he ice imaged by :his KRMS mission in March
1983 in the Beaufort Sea offshore from Barrow, Alaska, was predcminantly first-
yeur and sccond-year ice. Multiyear ice was observed very infrequently, so its

repregentation in dats set A is imited.

, Figuree IV-1 through IV-10 show the ten 072 x 512 pixel KRMS imeges
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FIGUBE IV~-1. Full 512 x 512 pixel image showing locations where
64 x 64 pixel subareas were extracied as samples MY1
through MY7 and FY5 of data set 4.




FIGURE IV-2. Full 512 x 512 pixel image showing locations where
64 x B4 pixel subareas were extracted as sarmples MY8

and MY9 of data set A.
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FIGURE IV—-3. Full 512 x 512 pixel image showing locations where
64 x 64 pixel subareas were extracted as samples MY10
through MY12 and FY6 through FY7 of data set A.
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FIGURE IV-4. Full 512 x 512 pixel image showing locations where
64 x 64 pixel suba,eas were extracted as sarnples SY1
through SY12 of datla set A,




FIGURE IV-5. Full 512 x 512 pixel image showing locations where
64 x 64 pixel subarezs were extracted as sumples FY1
through FY4 of data set A.
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FIGURE IV--86. Full 512 x 512 pixel image showing locations where

64 x 64 pixel subareas were extracted as samples MY13
threugh MY18 of data set A,




FIGUBE IV-7. Full 512 x 512 pixel irnage showing locations where

64 x 64 pixel subareas were extracted as samples SY13
and SY14 of data set A.
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FIGURE IV-8. Full 512 x 512 pixel image showing locations where
64 x 64 pixel subarcas were extracted as sarmples SY15
through SY18 of data set A.
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FIGURE IV~8. Full 512 x 512 pixel image showing locations where
64 x 64 pixel subareas were extracted as samples SY19
through SY22 of data set A.
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FIGURE IV-10. Full 512 x 512 pixel image showing locations where
84 x 64 pixel subareas were extracted as samples SYZ3
through 5Y25 of data set A




from which the 50 subimages of data set A were extracted. 'The figures also

contain graphic inlays marking the exast location of each of the extracted images
and its associated assigned sample identification number. First-year ice samples
are labeled FY1 through FY7, second-year samples are designated SY1 through
SY25, and multiyear samples bear labeis MY1 through MY18. Figures IV-1
through 1V-10 &lso contain vertical dashed lines. This vertical lines mark the
100** sample in from each edge of the image. In Section II, considerations of
image distoriion and reeolutiop lead to the recornmendation that the outer 100
samples be ignored in the analysis. To a large degree this recommendation has
been followed. However, the reader will note that some of the extracted samples
overlapped into the forbidden edge areas. The violation of the guideline was
unavoidabie in these cases, bui the number and amouni of the overlaps iuio
the edge regions is small and should not significantly impact upon the analysis

results.

First-year ice is very uniform, so seven samples are considered adequate to
characterize this ice type for the present study. Variability within ice categories
increases with ice age, which leads to larger sampling requirements to reliably
characterize the older ice types. Omnly 18 subimages of multiyear ice could be
found for inclusion in date set A. Unlimited samples of second-year ice are avail-
able, but it makes no sense to cbtain extremely large numbers of eecond-year
samples when multiyear samples are limited to 18. Therefore, 25 second-year
samples were selected to represent that ice type. Further, not all samples are
unique. Several sample pairs overlap to some extent, producing samples with
part of their area in common. In many cases, four samples were selected to be
adjacent in the original image so that these adjacent 64 x 64 pixel samples couid

be treated as a single 128 x 128 pixel sample. The existence of both 64 x 64
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and 128 x 128 images in data set A permits some limited investigation into the
effects of sample size. Appendix C contains numeric values for each of the 25
candidate texture measures listed in Table I1I-1 for each of the 50 sample images

in data set A.

B. NORMALITY

The topic of multivariate normality of the image texture data set was
discussed in Section III.B.2. That section identified the linear correlation coef-
ficient of the Q-Q plot as the chosen measure of normality. Q-Q plots, like the
example shown in Appendix B, were constructed for each of the 25 variables in
data set A. Each variable resulted in two plots, one for second-year ice and one
for multiyear ice. (Q-Q plots were not constructed for first-year ice because of
the small sample size.) A histogram of the linear correlation coefficients of the 50
Q-Q plots from data set A is shown in Figure 1V-11. The majority of the values
fall in the range of 0.95 to 1.0. It will be assumed that these are the normally
distributed variables. Eight Q-Q plots have correlation coefficients below 0.95.

These plots require further examination.

Four of the cases with correlation of .91 or 6.92 are SY-COR15, SY-LMI,
MY-ENGI15, and 5Y-KURT. For COR15, LM1, and KURT the multiyear corre-
lation coeflicient values are 0.97, 0.98, and 0.95, respectively, and the second-year
coefficient for ENG15 is 0.98. Because the low correlation did not occur for both
the second-year and multiyear cases, it is concluded that these low values result
from the small sample sizes and are not truly indicative of nonnormality of these
variables. However, the remaining four cases with Q-Q plot linear correlation
coefficients in the 0.83 tc 0.9] range are PR3 (both second-year and multiyear)

and PR15 (both second-year and multiyear). Because all cluster prominence
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cases show low correlation, it is concluded that cluster prominence does have a

dclirte nonnormality problem, which should be corrected,

Examination of the histograms of the cluster prominence values shows
long tails in the positive direction. This type of nonnormality can often be
corrected by a logarithmic transformation of the original variables. Appli:ation
of the equations

LPR3 = In(PR32107%) 4-5
and v -1)
LPRI15 = In(PR152107%) + 5

resulted in two new variables, LPR3 and LPR15, from the original PR3 and PR15
values. Q-Q plota of LPR3 and LPRI15 resulted in four correlation coefficient
values ranging from 0.95 to 1.0, which is in the range that has been assumed to
represent normality. Therefore, the LPR3 and LPR15 variables have heen added
to Table C-1 in Appendix C. The new variables will replace PR3 and PR15 in all
subsequent analysis. Data set A after this transformation of cluster prominence
values, is considered to be normally distributed within the limits of our ability

to measure normality of data sets of this relatively small size.

C. CORRELATION WITH ICE TYPE

Correlation between ice type ard the numerical values of texture measures

was included in the list of desirable characteristics for texture measures in Section

1II-B. This ability of texture measures to serve as discriminators of ice type

is, of course, the central requirement of this research area. The Bayesian ice-
type classification based on each individual texture measure was chosen as the

measure of correlation between ice type and the candidate texture measures,
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Appendix A contains the theory of maximum Bayesian classification. Now that
the approximate normality of date set A has been esiablished in the preceding
section (Bayesian classification assumes normally distributed variables), the ice-
type classification task can begin. The hard dustering of data set A will be
examined as a means of estimating the correlation of texture measure values
with ice type. Hard clustering and Bayesian results will be compared. The
clustering approach is introduced because it can be extended more easily to

higher dimensional feature spaces.

The Bayesian classifier described in Appendix A represents a parametric
approach to estimating classification accuracy. The class separation thresholds
are calculated from two parameters: the means and standard deviations for each

£
L

ice type for a given texture measure {see Egqa. (A-5) and (A-6)). Therefore thege
statistics have been calculated by ice type for each variable in data set A. The
statistics are given in Table IV-1. Based on these statistics, Bayesian interclass
thresholds are caiculated using Eqs. (A-5) and (A-6). The thresholds become the
limits of integration in Eq. (A-7), which results in the elements of the confusion
matrix from which the dassification accuracy is calculated according to Eq. (A-
10). Table IV-1 shows these calculated ice-type classification accuracies for each

of the 25 candidate texture measures.

Note that MEAN is the best ice-classification variable with an estimated
accuracy of 93.0%. Hewever, MEAN is not a true texture measure in the strict
sense of the word. Of those texture measures cther than MEAN, ENG3 and
ENT3 scored the highest accuracies of 83.5% and 83.3%, respectively. Five of
the texture variables have no calculated Bayesian classification accuracies given
in Table 1V-1. These five variables are all poor classifiers of ice types whose

distributions overlap so strongly that Eq. (A-6) for classification threshold did
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TASBLE IV-1. DATA SET A STATISTICS

Meas FY s5Y MY Bayesian Clustering
Mean Std Mean Std Mean Std Accurecy Accuracy

MEAN 0433 6.0411 1.689 0.1159 1.295 0.2049 0.931 0.88
VAR 0.379 0.0488 0.854 0.3826 1.631 0.5670 0.806 0.76
SKEW  3.120 0.1344 2.688 0.3715 2.448 0.3155 0.649 0.80
KURT 2996 0.1723 3.421 0.5761 3.636 0.8060 - 0.50
INR3 0.451 0.0220 0.589 0.1169 0.895 0.2049 0.816 0.74
INR15  0.632 0.0789 1.473 0.6171 2,775 0.9244 0.820 0.78
LFR3 1.696 0.3572 3.444 1.0518 4.832 0.8165 0.806 0.74
LPR16  1.203 0.2970 2.598 0.9635 3.914 0.7502 0.781 0.70
HOM3 1673 0.0732 1.637 0.1099 1.321 0.15566 0.717 0.66
HOM15 1.450 0.0819 1.069 0.1876 0.785 0.15623 0.817 0.78
ENG3 2.591 0.2109 1.762 0.3944 1.128 0.2731 0.835 0.78
ENG16 2528 0.2615 1.563 0.4308 0.979 0.2560 0.823 0.76
ENT3 6.214 0.0817 6.626 0.2288 7.043 0.2099 0.833 0.80
ENT16  6.227 0.1042 6.729 0.2690 7.152 0.2155 0.82) 0.78
COR3 4.008 0.6032 6.140 1.0932 7.1217 0.5120 0.774 0.66
COR156 1754 0.524% 1.337 1.2328 1.564 0.8284 - 0.50
LM1 0.129 0.0334  0.531 0.4162 1.000 0.4900 0.724 0.63
LM2 0.097 0.0202 0.335 0.1734 0.644 0.2490 0.801 0.72
LM3 0.395 0.0663  0.652 0.1926 0.986 0.3685 0.7561 0.68

LM4 0.691 0.0968  0.685 0.1077 0.888 0.2254 - 0.80
LM5 2.668 0.2997  2.207 0.2866 2.648 0.3861 - 0.46
LM6 1.875 0.1848 1.534 0.2150 1.678 0.2926 - 0.40
LM7 2.259 0.2191 1.906 0.2999 1.958 0.35620 - 0.42

EDEN 1.841 0.1044  2.067 0.2072 2.619 0.26256 0.747 0.62
MBRL  3.476 0.1540  4.696 0.6889 5.794 0.7692 0.812 0.80




not have any useful solutions. (“useful soluticns” means threshold values that

lie between the means of the two distributions.)

An alternative to the parametric Bayesian calculations would be to use
clustering techniques to actually classify data set A and compare the classification
results with the known ice types of each sample. This alternative was pursued
here because the clustering approach can be extended to give cassifications in
higher dimensional {feature spaces more easily than can the Bayesian approach.
The clustering scheme chosen is a hard clustering with normalized distance, d;,
as the cluster membership criterion.

¢=M, (Iv —2)

J;

where z,, iz the vﬂue of the n'* data point being assigned class membership, p;
and o; are the a priori mean and standard deviation of cluster i. Sample n will
‘be assigned to that cluster for which d; < d; for all j # i. This clustering tech-
nique should give results identical to the Bayesian values if (a) the variables are
normally distributed, (b) the data set is large, and (c) all classes are represented

equrliy in the ensembie.

The statistics from Table IV-1 have been used to supply u; and o; values
fov am. (IV-2), and all samples have been clustered according to the resulting
distance values. The accuracies of the cless assizgnments made by clustering the

50 samples of data set A are included as the last column in Table IV-1.

Comparison of the classification accuracies derived by the Bayesian and
custering methods shows that the Bayesian results a:e consistently higher than
the empirical estimates based on clustering of data set A. The reason for this

difference (hypothesized but not proven here) is thal the Bayesian calculatione




were based on the assumption of equal a priors probabilities for each of the pos-
sible classes. In data set A the first-year class is represented by 7 samples as
compared to 25 and 18 samples, respectively, for the second-year and multiyear
classes. The reason that first-year ice was sparsely represented is that it is eas-
ily distinguishable from the other two, which means it can be easily classified as
first-year. Thus, the data set upon which the clustering was performed contained
an underrepresentation of the easily classified samples relative to the more dif-
ficult samples to classify. This imbalance in ice type representation leads to an

underestimate of approximately 6% in the classification accuracy.

The computational requirements for Bayesian classification become pro-
hibitive for high dimensional feature spaces. Therefore, the clustering approach
is used to examine how classification accuracy increases as texture measures are
applied in combination. Clustering can be extended to higher dimensions by
simply replacing z, and u; with vectors X, and fi; and defining the distance
metric as

b = (Xn ~ )57 (X — i), (v -3)
where 3 is the covariance matrix of X,,. Eq. (IV-3) has been applied to all pair-
wise combinations of the 25 texture measures calculated for data set A. These
bivariate classification accuracy values are given in Table 1V-2. The interesting
thing to notice in this table is the manner in which the classification accura-
cies changed in comy-arison to the single variable cases. Several variable pairs
involving the MEAN variable gave 98% accuracy compared to 88% for MEAN
and 80% for the best of the true texture measures taken individually. Combining
texture with mean intensity resulted in significant improvement. However, if we

exclude MEAN and consider only the remaining variables, the MBRL/LM5 com-

bination gave ihe best classification accuracy at 86%. All combinations with ac-
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curacy values of 84% or higher are given in boldface numerals in Table IV-2. All
of these better combinations (ENG3/HOMI15, ENT3/COR15, MBRL/HOMS3,
MRBRL/LM5, MBRL/LM6, end SKEW/LM2) involve one good univariate clas-

sification variable with one very poor univariate dassifier. It is noteworthy that

two good variables do not combine to form the best bivariate combinations. This
fact leads to two conclusions. Firsi, the better single variables are, in essence,

alternate representations of the same texture informatien. Therefore, combining

- these variables introduces no new information for ice-type classification. The

weond conclusion is that it would be wrong to discard some of the very poor

¢t ~rifivr ion varisbles (a step which the author had intented to perform) because

- in the later muliivariate analysis, the worst texture measures in the univariate

- yenge may well vrcotne unporiani.

Cnce the multivanate clustering software was in place for the bivariate
calculations, it was a simple extension to combine all 25 texture measures inio
the clustering problem. By using all 25 of the variables of data set A, ice types
could be dassified with 100% accuracy. The MEAN variable was removed from
the calculations and a 24-dimensional clustering of *he true texture variables
was performed. This 24-dimensional clustering resulted in a 94% classification
of data set A. A word of caution is in order when considering the adequacy
of our set of texture measures. First, remember that the image sample size is
64 x 64 pixels. The evaluation of dassification accuracies is inexorably tied
to sample size. As sample size increases, noise in the texture data is reduced
and the clusters tighten, thereby improving interclass separability. However,
this accuracy evaluation is conducted on the same date set that was used to
design the classifier. An independent data set for accuracy evaluation would

give more reliable and probably lower estimates than the procedure followed
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here. Furthermore, the present data are from one location and one day. If data

from different days and from different geographical regions were included, then
numnerical values for clustering accuracy in the ensemble of texture measures
used here would undoubtedly change. Therefore, the reader is cautioned against
placing too much importance on the exact values of clustering accuracies. The
accuracies are presented here only to give a rough idee of the usefulness of various
variables or combinations of variables. Conclusions beyond this are not supported

by the data or the analysis procedures.

D. LINEAR MIXING

The global approach to image texture analysis developed here requires
that texture measures mix linearly. This requirement was discussed in Section
[11.B.3. To evaluate the mixing characteristics of the candidate texture mea-
sures, eight samples from data set A are used. Samples FY1 through FY4 were
combined into a single image, and samples MY13 through MY16 are combined
into another image. These sample combinations resulted in two 128 x 128 pixel
images with widely different textures, which were mosaicked to form the “mix-
ture” image shown in Figure IV-12. Values of the candidate texture measures
were computed for this synthetic ice-type mixture, as well as for the individual
pure ice-type halves of the image. These results are given in Table IV-3. From
these three measured velues the pesrcentage of the mixture that was multiyear
ice (assuming linearity) was calculated and presented in the last column of Table
IV-3. Of course, the correct answer for percentage of multiyear ice in the mixture
is 50%. The texture variables, which resulted in approximately 50% multiyear
compositions based on linear predictions, Lave their values shown in boldface

type in the last column of the table.
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FIGURE IV-12. A FY (left) / MY (right) mixture image. The difference
in brightness levels between the two halves prevents
enhancing both halves simultaneously. Top image
shows FY ice, bottom image shows MY ice,
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TABLE IV-3. TEXTURE MEASURES FROM FIG. IV-12

Meas S.F. Measured Values Linearly Calc.t
FY Half MY Half Whole Image MY Fraction |

MEAN 10° 0.448 1.561 1.005 0.50 ]

VAR  10? 0.424 1.499 31.954 29.30 4

SKEW 10° 3.061 2.200 3.046 0.02

KURT 10° 2.859 4.086 1.104 -1.43

INR3 10? 0.459 0.777 1.257 2.50

INR15 103 0.657 2.430 5.049 2.48

LPR3 10° 1.858 5.066 10.164 2.59

LPR15 10° 1.463 4.174 10.098 3.19

HOM3 107! 1.651 1.404 1.518 0.54

HOM15 101 1.417 0.858 1.104 0.56

ENG3 1073 2.140 1.025 0.780 1.22

ENG15 107? 2.015 0.750 0.650 108

ENT3 10° 6.412 7.223 7.531 1.38 ’

ENT15 16° 6.476 7.527 7.768 1.23

COR3 107! 4.573 7.409 9.805 1.84

COR15 101 2.161 2.038 9.244 -57.59

LM1  10%° 0.168 1.269 36.684 33.17

LM2 101 0.103 0.557 0.320 0.48

LM3 10 0.367 1.144 6.751 0.49

LM4  10%3 0.626 0.989 0.814 0.52

LM5s  10° 2.465 2.670 2.575 0.54

LM6  10° 1.785 1.751 1.753 0.94

LM7 107 2.181 2.126 2.132 0.89

EDEN 10° 1.847 2.303 2.302 1.00

MBRL 10° 3.731 6.222 25.525 8.75

t Linearly calc. MY fraction of mixture image is given by (col5 — col3)/(col4 —
coll).




Note in Table IV-3 that only the MEAN and 6 texture measures (HOM3,
HOM15, LM2, LM3, LM4, and LM5) come close to linear behavior in the mixing
operation. This fact is significant in light of intentions to apply linear unmixing
theory in a global approach to analysis of image texture. The development of new
image texture measures that possess linear mixing properties should be pursued

if the global approach to texture analysis is to receive broad application.

The nonlinear behavior exhibited by the data in Table IV-3 was discovered
to result mainly from the seam between the two halves of the mixture image.
The large step in intensity arising from different mean intensities for the image
halves completely dominates the value of many of the texture measures, even
though the pixels bordering the seam occupy less than 1% of the image area. To
verify that the noniinearity resuiis irom the seam, iniensiiies from both halves of
the mixture image were offset to have a mean v~lue of 128 digital counts. This

new mixture image, with matched mean intensities, is shown as Figure 1V-13.

Texture measure calculations were repeated on this matched mean image with

the results shown in Table IV-4. With the background intensity step removed,

the number of texture measures that mix linearly is increased to 12.

Knowing that meen removal results in an increased number of usable

texture measures, a decision must be made. One can either proceed with a

greatly reduced number of texture variables, or produce an acceptable technique

for detrending mixture images. It is not desirable to restrict the variety of texture

measures under analysis, but detrending natural ice-type mixtures in KRMS

images 15 a major area of study in itself. The approach chosen here was to use

the largest possible number of variables while working with synthetic mixtures,

since mean removal in synthetic mixtures is a trivial problem. It will then be

demonstrated, using synthetic mixtures, that the smeller set of naturally mixing

86




FIGURE IV—-13. A FY (left) / MY (right) mixture image with the mean
brightness of each half offset to a value of 128,
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TABLE IV-4. TEXTURE MEASURES FROM FIG. IV-13

Meas S.F. Measured Values Linearly Calc.t
FY Half MY Half Whole Image MY Fraction

MEAN 10? 1.278 1.281 1.280 -
VAR 102 0.424 1.499 0.962 0.560
SKEW 10° 3.061 2.200 2.260 0.93
KURT 10° 2.859 4.086 5.186 1.99
INR3 10 0.459 0.777 0.626 0.53
INR15 102 0.657 2.430 1.528 0.49
LPR3 10° 1.858 5.666 4.395 0.79
LPR15 10° 1.463 4.174 3.521 0.76
HOM3 107! 1.651 1.404 1.522 0.562
HOM15 107!} 1.417 0.858 1.136 0.50
ENG3 1073 2.140 1.025 1.390 0.67
ENG15 1073 2.015 0.750 1.155 0.68
ENT3 10° 6.412 7.223 6.960 0.68
ENT15 10° 6.476 7.527 7.178 0.67
COR3 107! 4.573 7.409 6.741 0.76
COR15 10! 2.161 2.038 2.011 1.22
IL.M1 1036 0.168 1.269 0.679 0.4¢6
LM2 1016 0.103 0.557 0.320 0.48
LM3 1013 0.368 1.145 0.752 0.49
1L.M4 1019 0.626 0.989 0.814 0.52
LM5 10° 2.466 2.670 2.576 0.54
LM6 108 1.785 1.751 1.753 0.94
LM7 W07 2.181 2.126 2.132 0.89
EDEN 10 1.847 2.303 2.088 0.53
MBRIL 10° 3.731 6.222 4.807 0.43

1 lLinearly cale. MY fraction of mixture image is given by (col5 - col3)/(col4 —
col3).
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texture measures does not significantly reduce unmixing accuracy in this data
set. We will therefore proceed to natural mixtures with a reduced variable set

and avoid dealing with the problem of detrending natural KRMS mixture images.

E. INVARIANCE UNDER LINEAR TRANSFORMATION

Section III.B.5 discussed invariance under linear transforination of image
intensity values as a desirable Lt nonessential characteristic of image texture
measures. A 128 x 128 pixel image formed from data set A samples MY13
through MY16 was used to investigate this aspect of the candidate texture mea-
sures. Numerical values of the texture measures for this image were given in
Table IV-3. Intensity values within this image were then linearly transformed
according to Eq. (II1-3), where the constants a and b are given values of 0.8 and
-20.0, respectively. Texture measures were recalculated for the transformed im-
age. Table 1V-5 compares the texture measures calculated from the original and
from the transformed imagery, as well as gives & percentage difference between
the two values. From these difference values, only SKEW, KURT, COR3, and
COR15 are clearly invariant under linear transformation of intensities. Three
additional variables, ENT3, ENT15, and MBRL, are probably close enough to
invariant to be considered as such in the present application. However, these
invariant texture measures, with the exception of MBRL, are not those that mix
linearly. Therefore, numerical values of texture measures or coefficients involved
in ice-type discrimination algorithms based on texture in this KRMS data set are
not universal. The philosophy of texture analysis developed in this dissertation
will be applicable {0 other data sets, but the specific numerical values derived

from this work will need o be recalculated for other data sets.

The development of image texture measures that are invariant to lineer
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TABLE IV-5. EFFECT OF INTENSITY TRANSFORMATION ON
IMAGE TEXTURE MEASURES

Meas S.F. Calculated Values Difference
Orig. Image Trens. Image (%)
MEAN 10?2 1.561 1.049 -32.8
VAR 10? 1.499 0.960 -36.0
SKEW  10° 2.200 2.201 0.0
KURT  10° 4,086 4.079 -0.2
INR3 102 0.777 0.499 -35.8
INR15 102 2.430 1.556 -36.0
LPR3 16° 5.066 4.172 -17.6
LPR15  10° 4.174 3.282 214
HOM3 10! 1.404 1.744 24.2
HOM15 1072 0.858 1.088 26.8
ENG3 1073 1.025 1.935 88.8
ENG15 1073 0.750 1.400 86.7
ENT3 10° 7.223 6.708 7.1
ENT15 10° 7.527 7.028 6.7
COR3 101 7.409 7.402 -6.1
COR15 107! 2.038 2.037 0.0
LM1 10%° 1.269 0.812 -36.0
LM2 108 0.557 0.356 -36.1
LM3 1012 1.144 0.731 -36.1
LM4 1013 0.989 0.632 -36.1
M5 10° 2.670 1.710 -36.0
1.M6 108 1.751 1.129 -35.5
LM7T 107 2.126 1.380 -35.1
FDEN 10! 2.303 1.845 -19.9

MBRL 10" 6.222 6.575 5.7




transformation of image intensity is highly desirable and is recommended as a

subject for further study.

F. SUMMARY OF THE TEXTURE ANALYSIS DATA SET

A set of fifty 64 x 64 pixel KRMS images, each containing only one of
three possitle ice types (FY, SY, and MY ), has been defined and named data. set
A. The 25 candidate texture measures discussed in Section III were calculated
for each of these samples. The numerical values of these texture measures were

analyzed to lead to the fellowing conclusions.

o All texture measures are approximately normaily distributed. (The cluster

prominence variables required logarithmic transformation to achieve nor-

mality.)

¢ Most of the texture measures do not mix linearly. A mean removal step
was shown to solve the nonlinearity problem for some variables. Texiure
measures with linear mixing properties, without mean removal, are recom-

mended as an area of future study.

o Texture measures, as a general rule, are not invariant to linear transfor-
mations of image intensity values. This means that KRMS calibration, as
well as day-to-day environmental variability, cannot be ignored. Universal
algorithms are not to be expected from the present ensemble of image tex-
ture parameters. A “recalibration” of image texture analysis algorithms is

indicated for each new KRMS data set.

¢ The 25 candidate texture measures proposed in Section III do seem adequate
inn the sense that they contain sufficient texture information to reasonably

identify the ice type of the samples in data set A. In other words, successful
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clustering of data set A indicates that our texture measures forr: the basis

of an effective feature space, as “effective” is illustrated in Figure 111-2.

e Very little improvement in ice-type discrimination power is observed as uni-
variate clustering progresses to multivariate clustering of the texture feature
vectors. This lack of improvement indicates that the various texture mea-
sures are highly correlated with each other cr, in other words, many texture
measures indicate the same type of texture information. The true dimen-
sionality of the data set is therefore seen to be significantly less than the
number of texture measures included in the study. This correlation between
variables indicates thatl farther along in the study, a large reduction in di-
mensionality is expected frem factor analysis, and that a relatively small
number of end members will be required to model the data set as an en-

semble of linear mixtures of end members.

Of the 25 texture variables calculated for data set A, only 12 wiil be
carried on intc the analysis of synthetic mixtures that will have means removed.
The 13 variables eliminated are the result of failure to mix linearly. As the study
progresaes to natural mixtures, the 12 variables will be further reduced to 7. This
result emphasizes the need for further investigation into new texture measures

with linear mixing properties.

The one characteristic of texture measures identified as desirable in Sec-
tion IiI, but not addressed in this Section, is the constant sum requirement
imposed on texture feature vectors by the CABFAC and QMODEL computer
codes, which are utilized for factor analysis and linear unmixing in later analysis

steps. The constant sum problem is the subject of Section V.
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V. THE CONSTANT-SUM CONSTRAINT

The texture feature vectors representing each sample imag;: in data set
A have been developed for further analysis using the linear unmixing model
contained within the CABFAC and QMODEL computer codes. (CABFAC
and QMODEL processing is noi encountered until Section VI.) However, the
constant-sum constraint, which is an integral part of the CABFAC/QMODEL
implementation of linear unmixing, will be the topic of this section. Data set A
is not constant-sum. Summations of the columns of Table C-1 range from 47.8

to 75.1, so this problem must be addressed.

The constant-sum constiraint can be traced to Miesch (1976a, 1976b,
1976¢), who epproached the unmixing problem by associating axes of an oblique
feature space with end members, and vector components in this end-member co-
ordinate system with end-member compositions in eech sample. However, linear
unmixing can be performed on any linear data set; the constant sums are not
a theoretical requiremneni. We will see how any general linear data set can be

unmixed and how the constant-sum constraint arises from the Miesch approach.

Consider a multivariate data set consisting of sample vectors with M
measurements comprising each vector. Sample vectors, X;, consist of z;y,.., 2 M,
where x;; represents the j** measurement on the i** sample. The constant-sum

constraint can be written,

=

J
for all 7, where K is a constant.

Linear mixing is illustrated by Figure (V-la), where M = 2. 1If end

members F, and E; are mixed in equal proportions to form sample X, then
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FIGURE V--1. One—dimensional linear mixing of (a) variable row sum
data, and (b) constant row sum data. F, and F, are axes
of the feature space. E;, andE, are end members.




assuming individual measurements mix linearly,

®11 = (€11 + €31)/2
(V-2
z12 = (€12 + e23)/2.

Ciearly, if point X, = (#11,,2) is plotted in Figure (V-1a}, it will fall equidistant
from E; and E; on the line segment E, E; that connects these end members. Any
other samples that could possibly be formed by mixing E; and E; in varying
proportions would similarly fall on the line Ey E;. Thus, one gets physically
meaningful unmixing results if the data set includes only points that fall on
E,L;. If the samples de not lie in a line between the end members (or close
to a line, allowing for noise in the data), then applying unmixing algorithms
is unjustified because the data set is not made up of mixtures of F; and FEj.
The need for a lineer constraint on the data set is, therefore, obvious. Equation
(V-1), which expresses the constant-e 1m constraint, does indeed define a line.
However, Eq. (V-1) represents only a subset of the possible lines that exist in
a two-dimensional measurement space. Line F; E; in Figure (V-1a) does not
satisfy Eq. (V-1). Nonetheless, we have just shown that the linear equation (Eq.
(V-2)) can be applied to form mixtures that fall along this line, The inverse
procedure for unmixing date along E; E; is equally straightforward. Therefore,
E, E; is clearly a valid mixing/unmixing line, even though it is not constant-sum.
The only constraint on a data set for uninixing that arises from the mathematics

is the general hyperplane equation

Zaj:c,-,- = K. (V__3)
J

The constant-sum constraint is a special case of Eq. (V-3), where a; = 1 for
all j. In other words, the constant-sum constraint is more restrictive than the

mathematics of linesr unmixing requires. Many data sets that satisfy Eq. (V-3)
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and that could be unmixed in principle cannot be processed using the CAB-
FAC/QMODEL programs because of the constant-sum requirements associated

with that code.

If we require the end members to lie on the axes F} and F; at unit distance
from the origin, as shown in Figure (V-1b), then the mixing line is also a constant
sum line where K = 1. In this case the proportion of E; in sample X, is simply
z1; and the proportion of E; in sample X; is @#13. The end members lie on
the axes, and the coordinates of the samples are the end-member proportions,
which is one advantage of constant sum data. In most cases the coordinate
system will be oblique rather than orthogonal as shown in Figure (V-1b), but the
same principle of associating sample coordinates with end-member compositions
also applies in the oblique case. In the general case shown in Figure (V-1a)
the calculation of end-member compositions is more complex. In the general
unmixing case, end-member proportions are given by

E, proportion = (211 — e21)/{e1:1 — ea1)
(V-4

E; proportion = (e11 — x11)/(e11 — €21).
The additional complexity associated with the general case can become signifi-
cant as the dimensionality of the feature space becomes large and the basis vectors
are oblique, The CABFAC/QMODEL programs were designed to take advantage
of the simplification that results from constant-sum data matrices. In addition
to the simplification just mentioned, other aspects of the CABFAC/QMODEL
code developed over the vears took advantage of the constant-sum assumption.
For example, dimensio.;ality reduction by identifying eigenvectors of the cosine 8
matrix (discussed in Sextion VI) is only guaranteed to be a reasonable approach if
the data are at least approximately constant-sum. Therefore, for several reasons,

the constant-sumn constraint cannot be violated when using these programs.
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Klovan (1981) has published a generalization of Q-mode factor analysis for

data matrices with variable row sums. The Klovan method involves projecting
data points onto a plane of constant sum K, where K is the average row sum for
the data matrix. K;, the row sum for the i** sample vector is saved for later use.
The analysis proceeds in the K plane. The resulting composition leadings and
composition scores are then scaled by K/K; so that estimates of the raw data
can be obtained in the original metric. The Klovan methed would seem (to the
author) to be useful only in those cases where the original data are very close
to constant-sum and only small adjustments are required. For other cases where
the data were in a hyperplane nearly perpendicular to the constant-sum plane,
the Klovan method could result in a large loss of information from the data set.
Therefore, this solution does not scem to be practical for the general variable

row-suin problem. The Klovan method was not utilized in this study.

Full (1988) claims to have a general variable row-sum version of CAB-
‘FAC/ QMODEL operational at the time of this writing. However, this software
was not available at the time that this analysis was performed. We were therefore
forced to find alternatives to deal with the variable row-sum nature of this image

texture data.

We have chosen to deal with the constant-sum problem by describing a
data set transformation that would operate on linear data sets obeying, at least
approximately, the general linear condition of Eq. (V-3) to produce constant-
sum data that obey Eq. (V-1) precisely. Such preprocessed data would then
be suitable for processing by CABFAC/QMODEL. The transformation, naned
the “Scale Invert then Force Transformation” (SIFT), will be demonstrated on a
simple two-dimensional data set consisting of 10 samples. The SIFT will then be

extended to hyperspace and applied to the usable variables from data set A to
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form a new data set, called data set B, which will be passed into the CABFAC

factor analysis in Section VI.

A. THE SCALE INVERT TEEN FORCE TRANSFORM

1. The Concept

The mathematically rigorous approach to forming constant-sum data sets
from linear data would be to find a best-fit hyperplane to the linear data set, and
then find the rotation that would transform this best-fit plane to a constant-sum
plane. If the original data were nearly linear, then the rotated data points would
be cluse enough to constant-sum that they could be forced to true constant-sum
without losing significant information content. The equation that forces a data

set X; to constant-sum set X is given by
ey =i/ Y wije (V-5)
i

To illustrate this “fit, rotate, then force” method, referred to hereafter as FRF,
the hypothetical two-dimensional data set shown in Table V-1 will be anal-
yzed. These data are mixtures of the end members E, = (0.41,0.40) and

E; = (1.25,0.63), plus some noise so that the data set is not perfectly linear.

This data set has no significance. These values were made up by the author

in order to provide a simple data set of known end-member proportions, which

could be used to illustrate the SIFT and FRF procedures and to show that these

are similar, but not mathematically identical means for forming constant-sum

data. End members E; and E; are samples 8 and 2, respectively, in Table V-1.

The fourth coluran of Table V-1 is the row sum for each of the samples.

Note that the sums range from 0.81 to 1.88, clearly indicating the variable row-

sum nature of this data. Column 5 of Table V-1 is the percentage of end-member




TABLE V-1. A HYPOTHETICAL TWO-DIMENSIONAL DATA

SET
Sample T41 T2 Ty + T4y %E, 1
1 1.10 0.55 1.65 19.3
2 1.25 0.63 1.88 0.0
3 0.51 0.45 (.96 87.1
4 1.20 0.58 1.78 7.1
5 0.80 .48 1.28 54.3
6 0.75 0.53 1.28 57.8
7 0.69 0.49 1.18 65.7
8 0.41 0.40 0.81 100.0
9 0.98 0.56 1.54 32.1
1C 0.62 0.45 1.07 75.0

t %E,; is calculated by projecting the sample onto the line Ey E; and then
applying Eq. (V-4).
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E, that is present in each of the samples. Even though the hypothetical data
set 15 not constant-sum, it is highly linear as evidenced by a linear correlation
coefficient between z;; and z;3 of 0.95. A least-squares linear fit to the data
results in a line described by Eq. (V-3), where a; = -0.72, a3 = 3.12, and
K = 1.0. Figure V-2 is a plot of these data. The linear fit to the data and the
“row sum = 1” line are also shown in the figure. From Figure V-2 we can see
that a clockwise rotation of 58° would put the best-fit line into a constant-sum
orientation. This two-dimensional rotation can be accomplished by subtracting
the mean vector X = (0.831,0.512) from each of the data vectors, premultiplying
the mean-removed data vectors by the matrix

[ cosl sinﬂ]

—sinb cosf |’

where @ is the angle of rotation, and then adding the mean vector to the result.
The data set that results from this rotation about the mean to the constant-sum
orientation, followed by a forcing to the “row sum = 1” line (Eq. (V-5)), is listed

in Table V-2 and plotied in Figure V-3.

By comparing the last columns of Tables V-1 and V-2 we see that the FRF
procedure has resulted in slightly altered proportions of end-member E;. The rms
difference between E; compositions in Tables V-1 and V-2 is 2.2%. The rotation
does not change the E, proportions, since a rigid rotation leaves relationships
between ssmples unchanged; rather, the forcing to constant-sum via Eq. (V-5)
alters compositional calculations. The rotation prior to application of Eq. (V-5)
is necessary to minimize the errors in compositional estimates introduced by the
forcing procedure. The need for the rotation is obvious if one pictures a linear
data set laying along the z;; = z;; line. In this case, forcing to constant-sum

would collapse all data points to the same location on the constant-sum line,
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TABLE V-2. DATA FROM TABLE V-1 AFTER THE FRF

TRANSFORMATION
Sample i T, ziy + 2, %E; 1
1 0.768 0.232 1.000 17.6
2 0.840 C.160 1.000 0.0
3 0.477 0.553 1.000 80.7
4 0.819 0.181 1.000 6.5
5 0.602 (.398 1.620 53.6
6 0.576 0.424 1.000 59.2
7 0.543 0.457 1.000 66.4
8 0.388 0.612 1.000 100.0
9 0.698 0.302 1.000 32.8
10 0.503 0.497 1.000 75.1

i %E, is calculated by applying Eq. (V-4).
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which would result in a total loss of compositional information contained in the

original data.

The extension of the FRF approach to large data sets of high dimensional-
ity is beset by mathematical complexity and computational burden. Therefore,
an alternate approach to forming constant-sum data from general linear data
sets is presented here. The proposed data transformation avoids multiple linear
regression and hyperspace rotations, while giving nearly equivalent resuits, at
least for the simmple hypothetical data set examined here. The data set from
Table V-1 will be used to show that useful constant-sum data can be obtained

by three steps.

¢ Scale each variable over the range of 0 to 1.

o lnvert z;; by replacing z,; with (1 — z;3).

o Force data to constant sum of 1 using Eq. (V-5).

Figure V-4 graphically illustrates each step. Table V-3 contains the constant-sum
data set thus derived. Comparison of the right column of Table V-3 with the
satne column in Table V-1 allows us to calculate the loss in mixing accuracy that
results from this simple constant-sum transformation. The comparison shows
that the percentage of ) in each cample in Table V-3 differs from the percentages
in Table V-1 by an rms value of 5.5%. This value is compared to an errer of
2.2% introduced by the more complex FRF transformation leading to the data in
Table V-2. Thus, the performance of the SIFT is slightly inferior in this case to
the more rigorons FRY algorithin., General conclusions concerning the relative
accuracies of the two methods should not be drawn from this one example. The
unmixing accuracy of the Sl¥FTed data could have been forced to come out to

any desired value by changing the values in the hypothetical data set accordingly.
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TABLE V-3. DATA FROM TABLE V-1 WITH THE
SIFT APPLIED

Sample T !, T + o), %k 1
1 0.702 0.298 1.600 29.8
2 1.000 0.000 1.600 0.0
3 0.132 0.868 1.000 86.8
4 0.812 0.188 1.000 18.8
5 0.416 0.584 1.000 58.4
6 0.482 0.518 1.000 51.8
7 0.354 0.646 1.000 64.6
8 0.000 1.000 1.000 100.0
9 0.691 0.309 1.000 30.9
10 0.242 0.758 1.000 75.8

1 %, is calculated by applying Eq. (V-4).
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The results of both the FRF transformation and the SIFT are data dependent.
This comparison has been conducted only to demonstrate the SIFT procedure
and to show that in some cases, such as the hypothetical data set used here, the
SIFT and FRF results can be similar in terms of resulting unmixing accuracy.
A multidimensional version of the SIFT will be applied to the image texture
data analyzed in this study. The appropriateness of this algorithm for forming
constant-sum data will tend to be further substantiated when we compare the
unmixing results of raw data, forced to constant-sum, and SIFTed data in a later
section. However, a precise estitnation of the errors introduced by the SIFT of
this image texture data can be established only by processing these date using

a veriable-sum version of CABFAC/QMODEL in the future.

The scaling of variables that is proposed in connection with the SIFT is
not a new idea. The CABFAC code has coniained an option to scale the data
over the range 0 to 1 for many years (Klovan and Imbrie, 1971). Scaling is
normally peiformed to balance the weighting of variables when magnitudes are
extremely different. The present texture variables range in value by many orders
of magnitude, so a scaling of the data would be advisable even if the SIFT was not
performed. The original contribution here is the inversion of one of the variables
in order to briny the data set into a more nearly constant-sum orientation prior

to forcing to constant-sum.

It should be reiterated that scaling and range inversion are both linear
operations; therefore, the unmixing characteristics of a data set should not be
changed in any way. Forcing to constant sum is a nonlinear process that can
degrade unmixing calculations on the forced data set. Scaling and range inversion
are performed to minimize the adverse effects that may result from forcing to

constant-sum.

106




4
r 2. Extension to Higher Dimensions
The SIFT can be easily extended into hyperspace. For the M-dimensional
case the scaling of all variables over the 0 to 1 range remains as the first step.
P However, the inversicn step becomes more involved. To performn the inversion,
one variable is selected as a reference variable. The choice of reference variable
is arbitrary; for purposes of discussion we will assume the first variable is the
» reference variable. Correlation coefficienis are then calculated between the ref-
erence variable and each of the M — 1 remaining variables. Certain variables
are then inverted and others left unchanged in such & manner that half of the
r variables are positively correlated and the other half negatively correlated with
the reference variable. (The (1 — z;;) range inversion of a scaled variable will
change the sign of its coeflicient of correlation wiih respect to the reference vari-
P able.) The procedure used here is to make all odd-numbered variables positively
correlated, and all even-numbered variables negatively correlated with the refer-
ence variable. The hypothesis put forth here is that if the original variable-sum
o data were nearly linear, then the scaled, half-inverted data will be close enough
to constant sum that it can be forced the rest of the way with a minimal loss of
information content.
o
3. Data Set B
The 12 texture measures identified in Section 1V as being suitable for
® analysis of synthetic mixtures are extracted from data set A and SIFTed to form
data set B, which will be the sul;ject of the first unmixing studies. The row sums
of data set B after range scaling, but prior to inversion or forcing, range from 2.40
® to 8.5. VAR is selected as the reference variable. Table V-4 shows the correlation
coeflicients between VAR and the other 11 variables. INR3, HOM15, LM1, LM3,
107
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TABLE V-4. CORRELATION OF TEXTURE VARIABLES
WITH “VAR”

Variable r Variable T

VAR 1.000 LM2 0.843
INR3 0.937 LM3 0.734
INR15 0.962 LM4 0.572
HOM3 -0.779 LM5 0.122
HOM15 -0.877 EDEN 0.888

LM1 0.903 MBRL 0.878




LM5, and MBRL were range inverted to make odd- and even-numbered variables
positively and negatively correlated with VAR. After inversion, row sums varied
from 5.20 to 6.94, which is much closer to a constant value than were the row
sums prior to inversion. The inverted data are then forced to a constant sum of
1, thereby completing the SIFT procedure. Appendix D contains the resulting
data set B in tabular form. Two questions should be addressed in connection
with the formation of data set B. Is the data set nearly linear so that application
of the SIFT and the subsequent attempts at unimixing are justified? How much
ice classification power has been lost by reducing the number of variables from

24 to 127

The linearity of the data set has been inferred in Section IV, where it was
observed that the ice dassification accuracy bascd on clustering did not improve
significantly as the dimensionality of the clustering feature space was increased.
The linearity of the data is confirmed here by direct calculation. A fit of the 12
texture measures from data set B to the general linear hyperplane equation (Eq.
(V-3)), by multiple linear regression, resulted in a multiple correlation coefficient
of 0.991. This ligh value for multiple correlation coeflicient confirms the general

linear nature of data set B.

The loss of ice discrimination power resulting from the reduced number of
texture of variables was investigated by clustering of the 12 variebles from data
set B, and comparing cluster memberships with known ice types for each sample.
In Section IV, where similar clustering was performed using 24 of the data set
A variables (MEAN was excluded), the resulting ice classification accuracy was
94%. Clustering of data set B resulted in a 92% classification accurecy, indicating
that the loss of ice discrimination power in going from 24 to 12 variables was not

significant.
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Data set B is now ready for factor analysis in Section VI. Factor analysis
will determine the true dimensionality of the data set and give an indication of

the number of end members supported by the texture data.
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VI. UNMIXING OF PURE SAMPLES

A. THE LINEAR MIXING MODEL

The linear mixing model can be stated,
K
X, ~ Za,‘-kEk, (VI-—-1)
k=1

where L is the k** end member. That is, sample vector X, can be approximated
by a weighted sum of several (K to be exact) end-member vectors. A constraint
on the weights, a;, is that

> k=1 (VI-2)

k
If the E, vectors represent “pure” end members, then linear unmixing theory
proceeds to interpret the a;; coefficients as representing the proportions of end
members Ej present in sample 7. This interpretation is consistent with the
constraint of Eq. (VI-2), since the sum of the end-member proportions in a
sarnple must be unity, i.e., 100% of every sample must consist of something.
Since our stated objective is to app!v unmixing theory to image texture data,
the first question that erises is whether our data fit the unmixing model of Eq.

(VI-1). The relevant questions are as follows.

¢ Eq. (VI-1) defines an approximation of X; by a weighted sum of end mem-

bers. How close does this approximation need to be, to be useful?

¢ How many end members, i.e., what value of K is necessary to provide
the desired accuracy in the approximation? In the trivial case where K is
equal to the number of samples in the data set, Eq. (VI-1) reduces to an
exact expression. However the exact solution, where every sample is an end

member, is of no practical value. Unless the X; vectors can be approximated
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with sufficient accuracy when K is relatively small, the unmixing analysis
will usually be difficult to interpret and, therefore, will offer little new insight

into the nature of the data set.

e What are the mixing proportions of the various Ejys in each of the samples,

i.e., what values of the a;; coeflicients will fit Eq. (VI-1) to our data set?

¢ Do the end members and mixing proportions of these end members in each

sample lead to improved understanding of the physical nature of the data?

Data set B will be used to begin to address these questions. Two pieces
of a priori information are availeble. First, all samples in data set B are “pure”
samples of a single ice-type. Since the data set contains no ice-type mixtures,
the a:r coefficients should have values close to 0 or 1 if the linear mixing model
is appropriate for this texture data. The second useful fact is that the number
of end members is expected to be three (first-year, second-year, and multiyear
ice). It is not certain that the data analysis will actually support exactly three
end members just because conventional arctic wisdom considers these three ice-
types as unique. However, K should certainly be small. If, for example, it was
found that Eq. (VI-1) could be adequately approximated only if K > 10, then
the unmixing model is obviously a bad choice for analyzing these KRMS image

textures.

The number of end members is associated with the true dimensionality
of the data set. In Figure (V-1), which illustrated two end-member mixing,
mixtures of the two end members were shown to lie in a straight line connecting
the end members. Therefore, in that case, two end members resulted in a one-
dimensional mixture data set. The “true” dimensionality of the data set was one

less than the number of end members. This relationship holds true for higher
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dimensioned feature spaces as well. That is, the number of end members required
to approximate Eq. (VI-1) is one larger than the true dimensionality of the data
sel. Therefore, the search for the required value of K translates into an analysis
of the data set dimensionality. Further information on selection of the proper
number of end members is available in Bezdek (1974), Miesch (1576b), and Full
et al. (1981).

B. TRUE DIMENSIONALITY OF DATA SET B

The previous sections showed that the 12 variables of data set B are
highly correlated. Therefore, we know that the true dimensionality of the data
is less than 12. However, analytic determination of this dimensionality is not
a simple problem. The general approach to the siruciure of muliivariaie daia
sets is to assume that the observable, or manifest, variables can be represented
as functions of a smaller number of latent, or hidden, variables. Normally the
functional relationships between manifest and latent variables are constrained
to be linear. That is, the latent variables are expressed as a weighted sum of
the mantfest variables, If X; is the original data vector whose components are
the values of the manifest variates, and if )2,’ is the same data vector expressed
in a feature space whose basis vectors are the latent variables, tiien the linear

relationship between X; and X[ can be written as a matrix equation.

X! = XiT, (VI -3)

where 7' is a square matrix containing the coefficients of the linear relationship.
Eq. (V1-3) is the standard equation for transformation of coordinate systems.
The search search for lutent variables is therefore nothing more than a search

for a particular type of coordinate transformation. The number of “significant”
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latent variables in the new transformed feature space is effectively the true di-

mensionality of the original data.

The problem is, then, to find a “best” coordinate transformation matrix,
T, to use to in Eq. (VI-3) to convert data vectors from manifest to latent feature
space. One could specify a transformation that requires the variance in the
original data set to be preserved in the latent feature space. This approach
has been given the name Principal Components Analysis (PCA). However, one
might also define T' so that the original data set can best be reconstructed from a
reduced set of the latent vector components. This approach has been termed Q-
mode Factor Analysis. Other alternatives for defining T could also be proposed.
However, we will confine discussion here to the two common techniques just’

menticned.

1. Principal Components

Under PCA the original manifesi variables are transformed (linearly) into
a smaller set of new latent variables (called principal components), which account
for the largest possible amount of variance in the deta set. The variance of a

multivariate data set is expressed by the covariance matrix, C.

N
¢ = ZN—%T) Z:‘X - )T (X; - i) (VI-4)
Use of the covariance matrix to define a variance preserving coordinate system
transformation relies on the concept of spectral decomposition of a matrix (John-
son and Wichern, 1982). Spectral decomposition of a K x K symmetric mair-.,

A, states that the matrix can be expressed as a weighted sum of vector cross-

products.

K
A= \élé (VI -5)




The vectors € are usually normalized to unit length , i.c., €xe; = 1, and the X
coeflicients adjusted accordingly so that the As carry the magnitude information
forr each term of Eq. (VI-5). It is customary, then, to arrange the terms of the
equation in order or decreasing values of A\y. Proof of Eq. (VI-5) can be found

in Dunn (1928).

Pairs of Ay and €, that satisfy Eq. (VI-5) can be found from eigen analysis.
Eigenvalues, X, can be found by solving the k'* degree polynomial equation

(known as the characteristic equation)
|A — XI| = 0. (VI -6)

The left side is the determinant of the matrix A— I, where I denotes the identity

ot el . 1 ‘ S RIS DU § e o oo v im rnl 4bhn
mairix. Corresponding v every €igenvalue, Ay, is an €igenvector, &, such that
(A-MDET =0, k=1,2,..,K (VI-T)
k kY — Lty Ly g )

Further details concerning eigen analysis are available in numerous references
such as Cullen (1966), Finkbeiner (1966), MacDuffee, (1943), Thrall and Torn-
hetm (1957), and White (1966).

Certain facts from eigen analysis will be recalled. One theorem on this
subject states that if all the elements of the matrix are positive, which is the
vase for a covariance walrix, then the eigenvalues are also positive. A second
theorem states that for a real symmetric mairix (again, the covariance matrix
qualifies) the eigenvectors corresponding to distinct eigenvalues are orthogonal.
Yet another useful fact is that, since the eigenvectors in Eq. (VI-5) appear only
in quadratic terrus, there is a sign ambiguity in eigenvectors. That is, €, and —¢),

are equivalent eigenvectors. Although Eqs. (V1-6) and (V1-7) provide a means of

colculating eigenvalues and eigenvectors, direct solution of these equations is not




feasible when the number of variables is large. For this reason efficient numerical
methods have been developed for eigen analysis. The CABFAC computer code

used in this study employs Householder's method (Wilkinson, 1960).

When eigen analysis has been performed on the covariance matrix, the
columns of the manifest to latent transformation matrix, T, are formed from
the eigenvectors (the principal components) of the covariance matrix. When the
data set is then transformed into the latent coordinate system (Eq. (VI-3)),
the relative magnitudes of the eigenvalues express the proportion of the original
variance captured by the new axes in the principal component feature space.
Mathematically, the proportion of total variance associated with cach principal
component is

Ak

% variance i ey = ’ (VI—8)

Tr C°

The application of PCA to data set B results in the proportioning of
variance between the 12 principal components shown in Table VI-1. The di-
mensionality of this data et is not obvious, based on this table. If 90% of the
variance is a sufficient representation of the original data set, then the data set is
two-dimensional (three end members) as we expect it to be from a priori knowl-
edge. However, on what basis can we say that 90% of the variance is sufficient?
There is no logical criterion upon which to make this decision. The absence of
meaningful criteria for determining what proportion of the variance should be

retained is a weakness of PCA.

Another weakness of PCA is the failure to make a distinction between
variance and information (Ehrlich and Full, 1987). In addition to ice-type infor-
mation, variance includes random uncorrelated fluctuations, such as instrument

noise, and other fluctuations not related to ice type, such as atmospheric path-
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TABLE VI-1. EIGENVALUES OF C FROM DATA SET B

k Eigenvalue % Variance Cum. %
1 33.881 67.76 67.76
2 7.879 15.76 83.52
3 2.869 5.74 89.26
4 2.087 417 93.43
5 1.225 2.45 95.88
(6 — N) - 4.12 100.00




length effzcts. In some data sets the larger principal components may actually
capture noise or other aspects of the variance structure not relaied to ice type.
Clearly, it i1s possible that the third or fourth principal components may carry
the most ice-type information, even though they may represent only a small per-

centage of the total variance. Therefore, determining data set dimensionality

from PCA is beset with difficulty.

2. Q-mode Factor Analysis

Miesch (1976b) used & more definitive method for judging dimensionality
of a multivariate data set. He proposed that if the dimemnsionality of a trans-
formed data set is sufficient to adequately represent the original data, that fact
would be exhibited by an even distribution of the unaccounted variance across
all of the originelly measured variables. A concentration of the unaccounted
variarce in only a few of the original variables can therefore be interpreted as an

indication that the reduced data set is of insufficient dimensionality.

The distribution of the residual variance can be determined by back-
calculating the sample vectors from eigenvector space to the original variable
space. A coefficient of determination between each of the original variable values
and the back-calculated values can then be computed. If the ccefficients of de-
termination are large and are nearly equal for all of the original variables, then
the redrced eigenvector feature space adequately represents the original data
according to the Meisch criterion. If one or more of the variables heve small
coefficients of determination relative to the other variables, then the residual

variance is concentrated in these variables and the dimensionality of the reduced

feature space is too small to adequately represent the original data.

Since the Meisch criterion for dimensionality involves reconstruction of
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the original sample vectors from the reduced sample vectors, an alternative to
the covariance matrix as the basis {or the eigen analysis is appropriate. If we form
a matrix consisting of the cosines between all possible pairs of sample vectors
and subjcct this matrix to eigen analysis, then the result is a dimension-reducing
transforrnation that preserves angular relationships between sarnple vectors, t.e.,
preserves maximum reconstructabilily of the original data set. This type of
transformation is consistent with the back-calculating criterion that is used to
judge dimensionality. Such a matrix consisting of angular cosines is called a
cosine theta, or similarity matrix. The use of the cosine theta matrix for eigen
analysis, rather than PCA based on the covariance matrix, would seem to be the
better choice because of the resulting maximization of back-calculation accuracy.
Eigen anslysis of the cosine theta matrix is commonly called -mode Factor

Analysis,

The cosine thets matrix is an N x N matrix, where N is the number of
samples in the data set. Such a matrix would require large storage space and
long eigen analysis computation times for large data sets. However, it is not
necessary to actually calculate and analyze the cosine theta matrix. Klovan and
Iimbrie (1971) show that only m of the eigen values of the cosine theta matrix
have non-zero values, where m is the dimensionality of the original feature space.
Furthermore, the non-zerc cigenvalues and their associated eigenvectors have

been shown to be identical to those of the m 3 m cross-product matrix, P.
P=> XIX; (VI -9)

Thus in this application, P is the mathematical equivalent of the cosine theta
matrix and I, whose storage requirements are independent of data set size, is

utilized in place of the cosine theta matrix for Q-mode Factor Analysis in the
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Extended CABFAC computer code (Klovan and Imbrie, 1971; Full et al., 1981).
Note the similarity between the covariance matrix (Ez. (VI-4)) and the cross-
product matrix (Eq. (VI-9)). The only difference is the subtraction of the mean
vector in the case of the covariance matrix. For the special case of’ data sets
with zero means, Principal Components Anslysis and Q-mode Factor Analysis

are identical.

Eigen analysis of the cross-product (cosine theta) matrix for data set B
results in the eigenvalues shown in Table VI-2. The coeflicients of determination
between original and back-calculated sample vectors are plotted as a function
of number of end members in Figure VI-1. The figure shows that for two end
members, two of the variables (LM4 and LM5) have coefficients of determination
of 0.4073 and 0.0476 compared to coefficients of 0.8 or larger for the other 10
variables. According to the Miesch criterion, this distribution of residual variance
indicates that two end members are not adequate. As we move to three end
mermbers, the coeflicients of determination rise to 0.8 or higher for all variables,
thus indicating that three end members are sufficient to linearly model data set
B. This result is consistent with the a priors knowledge of the ice-texture data
set structure. We will therefore proceed into unmixing calculations, considering
data eet B to be two-dimensional, i.e., the data will be interpreted as linear
mixtures of three end members. The reduced fea‘ure space must therefore be
three-dimensionel in order o accommodate a two-dimensional data set that is

constrained to constant sum.

The matrix, T, which transforms the original twelve-dimensional deta into

a three-dimensional feature space using Eq. (VI-3), is constructed from the first
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TABLE VI-2. EIGENVALUES OF P FROM DATA SET B

Ax

k Eigenvalue s
1 40.76 81.52
2 7.10 95.72
3 0.96 7.64
4 0.43 98.49
5 0.30 99.08
(6 = N) - 100.00
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three eigenvectors of P.

- 0.170 0.355 —~0.6797
0398 —0.229 0.028
0.171 0.357 —0.012
0321 -0.235 0.023
0.303 0.467 ~0.096
0.391 -0.249 0.227
0.184 0.368 0.120
0396 -0.197 -0.138
0.143 0.223 0.505
0.292 0.002 -0.737
0.201 0.360 0.086
[ 0314 —-0.240  0.305.

(VI - 10)

C. THE VARIMAX TRANSFORMATION

The CABFAC software performs an additional rotation on the data vec-
tors in the reduced feature space (Klovan and Immbrie, 1371). The procedure used
is the well-known varimax method of Kaiser (1958). The varimax rotation is a
rigid, orthogonal rotation that does not change the relationships between sample
vectors. The varimax rotation is applied simply as a matter of convenience in
interpretation. The property of the varimax rotation that is of interest here is
the fact that the rotation tends to place the data cloud in the positive orthant.
This result is highly desirable if one wishes to piot the data for visual analysis

and interpretation as we have done in the following sections.

The result of applying the varimax criterion to the reduced feature space
data is a rotation matrix, V, which for the reduced three-dimensional version of

data set B, was found to be

0812 0573  0.115
V=1-0579 0815 0.028 | . (VI-11)
0.078  0.088 -0.993

To transform data direcily from the original feature space into the rotated, re-

duced feature space, one can combine transformation matrices resulting from
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Factor Analysis and ihe varimax rotation into a single transformation matrix by

taking the matrix product of T and V.

[-0.087 0378  0.104
0.456  0.061 0.010
-0.083 0.385  0.038
0.398 0.006  0.006
-0.015 0498  0.137
0.477  0.057 -0.190
-0.070 0413 -0.091
0.423 0.071 0.174
0.013 0.305 -0.482
0177 0117  0.763
-0.054 0414 -0.057
. 0416  0.024 -0.276

TV = (VI -12)

Equation (VI-12) is the matrix that will be applied to transform data set B into

a three-dimensional feature space for the unmixing analysis that follows. 1

D. END-MEMBER PROPORTIONS IN DATA SET B

Knowing {from factor analysis that data set B can be modeled using three
end members, and having established a matrix to transform the image texture
data into a three-dimensional feature space, we now proceed to the unmixing of

the individual samples. In other words, we calculate the a;x coeflicients of Eq.
(VI-1).

First it will be instructive to plot data set B as it exists in the reduced fea-
ture space. Several issues crucial to unmixing strategy will become apparent from
a visual inspection of the data. The reduced feature space is three-dimensional,

but the constant-sum constraint causes the data points to fall in a plane rather

than throughout the three-dimensional volume. The planar nature of the data al-
lows for easy plotting in two dimensions, as shown in Figure V1-2, where F;, F;, '

and Fj arc the basis vectors of the reduced feature space. The feature space has |
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been rotated for plotting so that the F; = F, = Fj line is perpendicular to the
page. The constant-sum plane in Figure VI-2 therefore lies in the plane of the

page.

The plot denotes first-year, second-yer, and multiyear samples with dif-
ferent symbols. Also plotted are the mean vectors for each of the ice classes.
These means will be assumed to be the appropriate end members for these ini-
tial unmixing calculations. Since we know ice type for each of these samples,
the end-member index, k, can be associated with an ice-type. Therefore, the
end-member notation Epy, Esy, and EMY will be used. The numerical values

for end members are (t.e., class means) as follows.

Epy =[0.868 0.177 —0.045]
Esy =[0.567 0.336 0.097] (VI -13)

Epry =[0.320 6.648 0.032]

Pairs of end members are connected in Figure VI-2 to indicate areas of
linear unmixing between these pairs. These end-member connecting lines form
a geometric figure (a triangle in this case) that is frequently referred to as the
mixing polytope. Samples felling on an edge of the polytope represent mixtures
of the two end members that form that line segment, with no contribution from
any other end members. Sample points falling within the area of the polytope
represent mixtures of three or more end members. According to linear mixing
theory, samples that fall outside the polytope should not occur because they rep-
resent mixing proportions greater than one or less than zero, which is physically
impossible. However with real data, samples do exist outside the mixing poly-
tope. Samples outside the polytepe can result from random noise in the data, or

from improper selection of the number or positions of end members.
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Two important observations are made from Figure VI-2. First, the data
are noisy. The :catter in the sample points belonging to a single ice-type is larger
that the size of the mixing polytope. Second, the polytope is a highly elongated
triangle. The SY ena member falls very close to the midpoint of the FY/MY
mixing line. That is, it will be very difficult to differentiate between SY ice and
an equal mixture of FY and MY. Each of these two factors will contribute to
rather large errors when sample proportions calculated from by unmixing this
data are compared with actual image compositions. Any steps that could be
taken to reduce noise levels in the data, or to expand the polytope to more
closely approximate an equilateral triangle, would improve the unmixing results.
However, before investigating these possibilities, let us calculate the unmixing

accuracies associated with the data chown in Figure VI-2.

1. Unmixing Data Set B

The computer code FUZZY QMODEL (Full et al., 1982) is used to calcu-
late mixing proportions. The main function of the QMODEL series of programs
(Klovan and Miesch, 1976; Miesch, 1976, and Full et al., 1981) is to determine
end members by one of several optional methods. Since the present interest is
in using class means as end members, these aspects of QMODEL are not needed
at this time. The background and detailed description of QMODEL are there-
fore deferred until a laier section where QMODEL’s end-member determination
capabilities are employed. For now it suffices to say that we employed a FUZZY
QMODEL option that allows vertices of the mixing polytope to be supplied as
input to the program. This option utilizes only that portion of QMODEL which
calculates end-member proportions for each sample based on its position with

respect to the supplied polytope.
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The compositions of the samples in data set B are known. Each sample has
a 1.0 proportion of one ice type and a 0.0 proportion of the other two ice types.
Each sample, therefore, provides three numbers (propertions of FY, SY, and
MY) to indicate unmixing accuracy. Thus the 50 samples in the data set provide
150 measures of accuracy. Looking at the 50 cases, which should have resulted
in proportions of 1.0, QMODEL-calculated proportions were found to average
0.985 and had a standard deviation of + 0.643 about that value. MODEL
calculated a mean proportion value of 0.118 4 0.615 for the 100 cases where 0.0
was the correct answer. The calculated proportions where 0.0 is the expected
answer are significantly biased toward the positive side. Combining all 150 error

values gives a single rms proportion error of 0.632 for data set B

These unmixing results arc very poor when one considers that by ran-
domly assigning each sample to a class, an rms proportion accuracy of 0.67 can
be achieved. Unmixing of the data in Figure VI-2 based on the polytope shown
is, therefore, only slightly superior to random guessing. However, the situation is
not as grave &s it first eeems. The global approach to image texture analysis was
undertaken because we concluded intuitively that ice type could not be accurately
determined based on the texture of small neighborhoods. These poor unmixing
results supply experimental confirmation of that initial conclusion. This unmix-
ing analysis has demousirated that even a 64 x 64 pixel immage sample size is not
large enough to generate stable ice-texture statistics. As sample size increascs,

the unmixing accuracy can be expected to improve.

If we assume that the rms error in calculated proportions decreases as
(no. of pizels in sample)™/2 then for a full 512 x 312 image (100 pixels on
each edge of a 512 x 512 image aot included for reasons discussed in Section II)

the rms error in calcnlated proportions would be reduced to 0.101. (The assumed
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dependance of accuracy on sample size is reasonable, since we have shown that the
original variables are normally distributed and since all subsequent operations
leading to composition estimates are linear.) This full image error of 10% in
ice-type compositions is approaching the useful range for many applications.
However, before we are content to lay all of our hopes on increased image size
alone, it wili be worthwhile tc investigate some possibilities for reducing the noise
in the data und for improving the shape of the mixing polytope. This problem
has consumed a great deal of effort, the details of which add no value to this
disseriation. However, some results will be presented here. The reader should
note that these are summary results and that the problem of reducing noise and
improving polytope shape are not as straightforward as they might appear from

the following brief treatment of these topics.

2. Noise Reduction

A significant portion of the random noise in the data seemed to originate
with the LM4 and LM5 variables. This judgment is based on observations sum-
marized as follows. In Figure I11-12, which shows the Laws' Mask images for
a typical KRMS image of multiyear ice, it does not appear visually that masks
4 and 5 contain much ice-type information. In Table IV-1 both LM4 and LM5
were found to be so devoid of second-year /multiyear discrimination power that
no solution existed for a Bayesian thresheld to separate these ice types. These
variables seemed to be useless until it was noted in Section IV that when pairs
of texture measurcs were considered in a bivariate classifier, the MBRL-LM5
combination gave betier ice-type classification than any other pair of variables.
It therefore seemed wise to include LM4 and LM5 in data set B. Is it & mistake

to include these variables? Can the noise in the data set be reduced and ice-iype
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proportion accuracy be improved if these veriables are excluded?

The variables LM4 and LM5 were removed from data set B and the data
were reprocessed through the SIFT, the CABFAC, and the QMODEL programs.
Figure VI-3 is a plot of the resulting data set in the reduced feature space. The
noise has been reduced by removal of the iwo variables in question. The reduced
noise level is especially apparent for first-year ice. Note in Figure VI-3 that the
square symbols are closely grouped about their mean point, whereas in Figure
VI-2, the square symbols are more widely scattered. The LM4 and LMS5 variables
are spparently responsible {or the scatter of first-year ice points in Figure VI1-2
and for increesed noise in the other ice iypes as well. Even though elimination of
these two variables has reduced the noise, the overall result is not desirable. The
ihird dimension of the polytope has also been lost, The second-ycar end member
now lies almost exactly on the firsi-year/multiyear edge of the polytope. We
have therefore eliminated our ability to distinguish second-year ice in order to

achieve a reduction in noise levels.

This result is not surprising, since the plot of coefficients of determination
in Figure VI-1 showed us that LM4 and LM5 were required for a three-end-
member fit to the linear mixing model. We therefore must retain LM4 and LMS5,
in spite of their noisy nature, if the ability to unmix KRMS images into three ice
types is to be retained. The rms error in caiculated ice-type proporiions for the
date shown in Figure VI-3 is 1.916, which is larger than the rms error of 0.632
by a factor of three when LM4 and LM5 are included.

3. Polytope Shape Improvement

The other possibility previously mentioned for improving unmixing ac-

curacy is to alter the shape of the mixing polytope from (hat shown in Figure
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V1-2. In other words, can some change be made such that the second-year end
member is not as close to the midpoint of the FY/MY side of the polytope as
is the case in Figure VI-27 One way to do this charge is to include the MEAN
variable, along with the 12 texture variables in data set B. To support this idea,
thr author recells attention to Table IV-1, where MEAN was shown to be a sig-
nificantly superior ice-type classifier to any of the individual texture measures.
Pairwise combinations of MEAN and a texture variable resulted in ice-type clas-
sification accuracies as high as 98% compared to 86% for the best combination
of two texture variables in Table IV-2, Therefore, one would expect the addition
of MEAN to the texture data set might improve dassification accuracy by im-
proving the shape of the polytope. MIEAN had previously been excluded from
consideration because it is not a true texture measure. However, in view of the
relatively poor mixing perforinance demonstrated by data set B containing tex-
ture information alone, it is appropriate to investigate what performance can be

obtained by mixing MEAN witu texture measures.

The ability to incorporate nontexture variables into the analysis is one
advantage of the approach employed here. The treatment of multivariate samples
as vectors in a feature space, combined with global statistics, and the unmixing
of the giobal values, is a paradigin that allows complete flexibility in combining

different variable types into a unified analysis.

Figure VI-4 shows the results of a 13-variable analysis (12 texture meca-
sures plus mean brightness). The mixing polytope in Figure VI-4 ie much better
shaped than that in Figure VI-2. Unmixing statistics based on this polytope show
an rms proportion error of (.341, which is significantly better than the value of

0.632 ohtained from texture measures alone. When extrapolated to a 512 x 312

pixel sample size, the rms error for combined texture and mean brightness is
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0.0035.

4. Combined Noise Reduction and Polytope Improvement

Figure VI-3 showed that removing LM4 and LM5 from the analysis re-
moved much of the noise in the data set, but that fact could not be taken advan-
tage of because these two variables were absolutly necessary to form a second-
year end member. Figure VI-4 then showed that using MEAN along with texture
measures enhances the separability of the second-year end member even better
than did LM4 and LM5. Therefore, the question arises: can one utilize MEAN
to provide gecond-year separability and at the same time remove LM4 and LM5
to reduce noise? Figure VI-5 shows this case. The data plotted in this figure
are derived from 10 texture variables (data selt B minus LM4 and LMS5) plus
MEAN. The rms error in proportion calculations is 0.334. This error is only
slightly better than the error in Figure Vi-4, where LM4 and LM5 are included.
Nevertheless, the error is smaller and the combination of removing .LM4 and LM5

while adding MEAN is the best ice-type proportion estimator of those evaluated.

We will therefore proceed from this point with two data sets to be evalu-
ated in parallel. The pure texture case, which includes the 12 texture measures of
date set B, be will be pursued to illustrate what car be done with texture infor-
mation only. Then a second case consisting of 10 texture measures (LM4, LM5
removed) and MEAN will be pursued in parallel to illugtrate improved ice-type

classification accuracy through combination of texture with cther information.

If the combination of texture and mean intersity is to be carried forward
into further analysis, then it is necessary to confirm that a three-end-member
approximation to the mixing model (£q. (VI-1)) is still appropriate after having

dropped two texture variables and added the mean intensity. To confirm this fact,
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the coeflicients of determination calculated in CABFAC are plotted in Figure VI-

6 for the texture/mean combination case. Here, us in the texture-only case, it

cat: be seen that an even distribution of residual variance results for three end

members or more. Therefore, the three-end-member solution is still justified for

this combined case.

For sake of completeness the data set, which consists of 10 texture vari-

ables and MEAN, is tabulated in Appendix E and is given the name data set C.

The transformation matrix to go from the data set C eleven-dimensional feature

space to the reduced three-aimensional varimax space is a follows.

r—0.091
0.453
-0.090
0.297
—0.028
TV = 0473
-0.086
0.439
—0.064
0.408
L 0.161

6.389
0.056
0.394
0.001
0.504
0.058
0.406
0.104
0.423
0.009
0.279

—0.085 7

0.086
-0.130

0.110

0.034
—-0.217
—-0.086
-0.213
—0.260
—-0.169

0.872 .

(VI - 14)

The nurnerical values for end members (i.e., class means) are as follows.

Epy =[1.010 0175 -0.186)

Esy =[0.532 0.358 0.110]

Epy =[0.320 0.677 0.003)

5. Conclusions from Unmixing Pure Samples

(VI —15)

Analysis of this set of fifty 64 x 64 pixel sample images of pure ice types

has led to the results suramarized below.

e Q-mode Factor Analysis has suggested a three-end-member mixing solution

for this data. Three end members is consisient with the number of con-

ventional ice categories (first-year, second-year, and multiyear) associated
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with this data. This offers encouragement that the rerults of the unnixing

mathematics will be easily interpretable in terms common to Arctic science.

¢ A determination of image composition by ice type based on unmixing has
been demonstrated to be accurate to an rms value of 0.632 using only texture
variables on images of this size. Accuracy hes been estimated io be 0.10 for

512 x 312 pixel images.

e Accuracy in determination of image composition has been shown to improve
by a factor of approximately two (0.334) if mean image brightness level is

included along with image texture information (0.055 for 512 x 312 images).
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VII. UNMIXING OF SYNTHETIC MIXTURES

A. SYNTHETIC MIXTURE DATA SET

Section IV-D established that many of the 12 image texture measures used
in data sets B and C in preceding sections do not mix linearly, unless the mean
brightness value is the same in each of the ice-type subareas of the mixture. The
first step in the analysis of mixture images is, therefore, to create a mixture data
set that meets this requirement of identical mean intensity in each component of
the mixture. Synthetic mixtures created in this manner are distinctly different
from naturally occurring mixtures where mean intensity varies with ice type.
The more general case of varying means will be treated in Section VIII. Here,
we address the simpler special case represented by these synthetic mixtures. By
working first with synthetic mixtures and then with natural mixtures, it will be
possible to evaluate the magnitude of the increase in proportion measurement

errors resulting from varying means among the components of the mixture.

Forty-two synthetic mixture images, named data set D, have been created
by combining the pure samples of data set A (Figures VI-1 through VI-10) in
various ways. The intensity values in the subimages were offset prior to merging
so that each has a mean value of 128. The mean-adjusted components are then
mosaicked to form 128 x 128 p.xel mixture images. The mixture images, labeled
MX1 through MX42, ave shows in Fignres VII-1 through VII-7. The same 12
texture measures associete¢ with data sel B are calcu.le;tcd fur these synthetic
mixture images. Mzsan intepsity i also calculsted, but this calcuiation is per-
formed prior to the ween adjusimeat step so thut MEAN has the velue ‘hat
would result from mosaicking images withovt en adinsiment. The texture and

mean velues for the images of data set 1 vie jabululed 3o Appendix §
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MX2

MX3 MX4

MX5

FIGURE VII-1. Synthetic ndxture images MX! — MX6 produced by
merging pure imnage samples from data set A.
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FIGURE VII-2. Synthetic mixture itnages MX7 - MX12 produced by
merging pure image samples from data set A,




MX13 MX14

MX15 MX16

MX18

FIGURE VII-3. Synthetic mixture images MX13 - MX18 produced by
merging pure itnage samples from data set A.
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MX19 MX20

MXR22

MX MX24

FIGURE VIi—4. Synthetic mixture images MX19 — MX24 produced by
merging pure image samples frormn data set A.



MXRS MXR26

MXZ7

MX30

: FIGURE VII-5. Synthetic mixture images MX25 - MX30 produced by
- merging pure image samples from data set A.
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MX34

MX35 MX36

FIGURE VII-8. Synthetic mixture images MX31 — MX36 produced by
merging pure image samples frorn data set A,
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MX37 MX38
MX39 MX40
MX41 MX42

FIGURE VII-7. Synthetic mixture images MX37 -- MX42 produced by
merging pure image samples from data set A.
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B. UNMIXING WITH CLASS MEANS AS END MEMBERS

1. Texture Measures Only

The 12 selected texture measures for the synthetic mixture images were
processed through the SIFT procedure to form: data set E given in Appendix
G. The CABFAC program was used to find the transformation matrix, TV,
which would put data set E into a three-dimensional reduced feature space. The

transformation matrix was found to be

-_0.060 0412  0.093
0443  0.023  0.096
_0.047 0434 0.044
0428 0012 —0.005
_0.019 0417  0.229
| 0455 0018 —0.071
TV =1 _0034 038 —0.005]" ViI -1
0408  0.009 0.178
0100 0412 —0.417
0085 —0.063  ©.820
—0.046 0384 0072

0.469  0.034 —0.200.

The mean vectors calculated from data sei A for each ice class were also SIFTed
and transformed into the reduced feature spece. Coordinaies of the mean vectors,

which will serve as end members for this unmixing step, are given below.
Epy =[0.861 0.089 0.050]
Esy =[0.463 0.278 0.260) (VII -2)
Epy =[0.170 0.674 0.157]

Figure VII-8 shows data set E and the class means which have been connected

to form the mixing polytope.

The ice-type compositions based on this polytope, which was input to

QMODEL for use as end members, are given in Table V1I-1. The accuracy (1.e.,
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FIGURE VII-8. Plot of data set E in the reduced feature space. Solid
dots indicate mean positions for samples belonging
to FY, SY, and MY ice classes in data set A.




TABLE VII-1. UNMIXING RESULTS FOR DATA SETS E AND F
Class Means from Data Sets B and C as End Members

Sample Known Proportions (%) Set E - Texture Only Set F - Texture + Mean
FY SY MY FY SY MY FY 5Y MY

MX1 0 0 100 35.46 -98.46 163.01 -1.37 -28.58 129.95
MX2 0 0 160 10.65 -72.i5 161.50 -14.91 -23.49 138.40
MX3 0 0 100 695 -51.09 144.14 -8.73 -19.24 127.96
MX4 0 100 0 -27.97 122.24 573 -16.87 104.20 12.67
MX5 0 100 0 1855 76.84 4.61 588 99.75 -5.63
MX6 0 100 0 4161 47.95 10.44 6.063 11240 -18.43
MX7 100 0 0 8959 13.82 -3.41 97.09 0.80 2.11
MX8 100 0 0 9222 7.69 0.09 99.11 -5.62 6.51
MX9 100 0 0 116.82 -27.76 10.93 100.24 6.91 -7.18
MX10 50 25 25 -0.87 102.27 -1.39 45.33 1142 43.26
) MX11 50 25 26 2749 4748 25,03 4341 1624 40.34
MX12 25 50 25 40.561 6227 -2.77 2893 83.43 -12.36
MXi3 25 50 25 4.09 62.i8  33.73 995 52.24 37.81
MX14 25 25 50 238 7276 2487 18.23 43.17 38.69
MX15 25 25 50 220 2649 68.31 649 2131 72.20
MZXi6 50 G 5 8.72  85.60 562 660 -5.28 52.63
> MX17 0 50 50 37.15 -75.91 138.76 -18.91 36.96 81.95
MX18 50 50 0 73568 -877 3509 46.80 42.34 10.85
MX19 25 75 0 2,11 113.53 -15.64 21.32 75.67 3.01
MX20 75 25 0 9212 1518 -7.31 7567 43.17 -18.73
MX21 75 0 25 6994 -7.95 38.01 €4.57 277  32.56
MX22 25 0 75 11.78 -10.15 98.36 19.38 -28.46 109.08
b MX?23 0 K 25 2019 -8.84 88.73 -3.95 39.57 64.38
MX24 0 25 % -3.75 41.25 62.50 092 3231 66.76
MX25 33 a3 33 -28.53 131.82 -3.29 30.90 14.63 54.47
MX26 a3 33 33 4144 -2.8 6136 20.28 30.29 40.33
MX?27 33 3 33 3.72 63.63 3265 2732 16.63 56.05
MX28 33 33 33 3245 771 5984 3762 -b.74 66.13
b MX?29 67 33 0 1B.34 123.67 -42.01 5841 4798 -6.39
MX30 33 67 0 7.15 110.08 -17.23 26.78 72.59 0.63
MX31 67 0 33 61.87 30.08 8.06 58.73 3746 3.81
MX32 KX 0 67 -9.42 8844 2098 37.37 -4.67 67.30
MX33 0 67 33 -19.17 117.86 131 -13.67 110.83 2.74
MX34 0 33 67 2567 1842 5591 -10.97 94.05 16.92
» MX35 100 0 0 64317 61.06 -2537 95.28 3.29 1.43
MX36 0 100 0 -26.74 101.156 2659 -18.82 §9.23 29.59
MX37 0 160 0 -11.89 146.86 -34.98 -15.31 157.66 -42.36
MX3as8 0 100 0 -42.68 132.74 994 -31.82 11737 14.45
MX39 0 100 0 6782 1954 1263 17.30 114.64 -31.96
MX40 0 100 0 -080 89.30 1150 -9.69 109.86  -0.17
MX41 0 0 100 1433 -31.6% 117.36 -39.95 B81.83 58.12
r MX42 0 0 100 4241 99.39 43.02 8.07 138 90.5b




rms difference between known and calculated compositions) for unmixing of data
set E is 0.404. If the value 0.33 is assigned to all calculated proportiens, the rms
error values would be 0.347. This case therefore exhibits no skill in determining

image composition by ice type.

The samples of data set E are 128 x 128 pixels in size compared to 64
»x 64 for data set B where the unmixing accuracy was calculated to be 0.632.
Based on sample size and random noise cancellaticn, one would expect the error
in data set E to be one-half of the value for data set B, or 0.316, rather than
the 0.404 measured here. The departure of the accuracy for these larger samples
from the random-roise-based predictions may be due to several factors, including
seam effects in the synthetic mixtures, different relative weightings of firsi-year,
second-year, and multiyear ice types in data sets B and E, and the smali statistical

sampling represented by 42 data points.

2. Texture Plus MEAN

The 10 texture measures included in data set C were cormbined with mean
image intensity, MEAN| to conetruct an 1l-variable data set called F (see Ap-
pendix H). The data from the 42 mixture samples and the class means from
data set A were, as before, SIFTed and processed by CABFAC to accomplish a

transformation into & three-dimensional reduced feature space. The calculated




transformation matrix in this case is

- —0.050  0.429 -0.0917
0.441 0.032  0.208
-0.037 0449 -0.184
0.407 0.000 0.182
0.002  0.457 0.037
TV = 6.454  0.020 -0.078}. (VII -3)
-0.044 0383 -0.099
0.455  0.063 —0.020
-0.020 0414 -0.235
0.476  0.025 —0.289
L -0.007 0.286  0.851 ]

Class mean end members for this case are

Epy =[ 0922 0.082 -—0.003]
Esy =1 0443 0357  0.200) (VII —4)

Epmy =[ 0182  0.788  0.030].

Figure VII-9 is a plot of data set F and the mixing polytope constructed
from the end members of Eq. (VII-4). Ice-type compositions based on this
polytope and the QMODEL code are given in Table VII-1 beside the the data
set E values previously cited. The accuracy of the calculated mixing proportions
is 0.211, which is approximately one-half of the value for texture only in data set
E. We see here the same accuracy relaticnships between texture only and texture
plus mean cases that was observed previously for pure sample data sets B and
C. The accuracy for F is again higher than the value of 0.167, which is predicted
from the results of the smaller sample data set C and random noise cancellation

considerations.

C. UNMIXING WITH EXTREME SAMPLES AS END MEMBERS

Up to this point we have used class means calculated from data set A,

which contains only pure samples, as end members for unmixing calculations.
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FIGURE V1I-9. Plot of data set F in the reduced feature space. Solid
" dets indicate mean positions for sarmples belonging
to FY, 8Y, and MY ice classes in data set A.




This choice of end members is reasonable, since one could assume that the mean
vector for a number of pure samples of a single ice type would be the “best”
representation of a sample consisting of 100% of that ice type. However, mean
vectors, which intuitivel‘y seem appropriate or even optimal as end members,
may not in fact be the best choice when best is judged in terms of the resulting
accuracy of calculated sample proportions. Furthermore, one may not always
have a set of pure samples of known composition from which to calculate means.
Therefore, as a practical matter, alternate techniques for finding end members
may be necessary or even preferable in some cases. Finding end-member vectors
is the major function of QMODEL. Several options are offered by that computer

code.

The simplest approach would be to use the axes of the varimax space as
end member vectors. Certainly this approach satisfies the linear model (Eq. (VI-
1)) exactiy, where the Ej, vectors are the varimax axes and the a; coefficients are
the coordinates of the data points in varimax space. This approach has several
disadvantages, however. First, the coordinates of the end members in the original
feature space may not always be positive. In other words, end members coincide
with physically unrealizable sample vectors so that a pure sample of a given
end member could never exit. A second disadvantage is that the constraint of
maintaining end members on the edge of the positive orthant is overly restrictive.
Data sets, such as the texture data studied here, where we have a complete data
coud formed by samples that are known to be mixtures of known end members,
show end member locations (i.e., vertices of the data cloud) which fall well away
from the varimax feature space axes. Clearly, this option is inappropriate for the
present image texture data, so the possibility of Fy, F3, and F3 as end-member

vectors was not pursued in this study.
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We move directly to the approach of Imbrie and Van Andel (1964), which

was ‘o consider the end members to be unit vectors that pass through the posi-
tions of real sample vectors occupying mutually extreme locations in the reduced
feature space. This approach, of course, assumes that all end membere are rep-
resented in the data set. It further assumes that no significant outliers result
from erroneous sainples. A set of extremal samples can be determined by an it-
erative method described by Manson and Imbrie (1964). Once the end-member
samples are identified, the compositions of each sarnple, a;x, can be derived us-
ing the oblique projection method given by Imbrie (1963). These techniques for
locating and using extreme samples as end members are offered as options in
the QMODEL code. Another option is to find extremal samples in the original
feature space. This second type of extremal end member was not investigated.
Fnd members taken as the most mutually extreme samples in varimax space
are sometime: call Imbrie oblique end members. The terminology “Imbrie end

members” will be used here.

1. Texture Measures Only

Data st E was uninixed using the three extreme samples (MX9, MX38,
and MX1 for FY, SY, and MY ice, respectively) identified by QMODEL as being
the Imbrie end members. Figure VII-10 shows data set E in reduced feature space
with a polytope formed by connecting these end mernbers. End-member vectors
coinciding with MX9, MX38, and MX1] are given below.

Epy =[0.912 0.093 —0.005]
Esy =[0.290 0.381 0.329! (VII - b)

Epmy =[0.080 0.943 —0.023]

Table VII-2 gives the calculated ice-type proportions for each synthetic mixture

sample. The rms composition . ror in this case was 0.289. This improvement is
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FIGURE VIi—-10. Plot of data set E in the reduced feature space. Solid
dots indicate Imbrie end members.



TABLE VII-2. UNMIXING RESULTS FOR DATA SETS E AND F
Imbrie End Members

Sample Known Proportions (%) Set E - Texture Only Set F - Texture + Mean
FY SY MY FY Sy MY FY 5y MY
MX1 0 0 100 0.00 0.00 100.00 11.86 -3.a8 92.12
MX2 0 0 100 -15.12 16.01  99.12 0.00 0.00 100.00
MX3 0 0 100 -11.87 24,12 87.75 5.43 1.81 92.76
MX4 0 100 0 10.61 92.21 -2.82 -1.47 70.63 30.84
MX5 ] 100 0 40.22 63.52 -3.74 18.47 66.21 15.32
MX6 0 100 0 52.85 47.16 -0.02 18.62 73.18 8.20
MX7 100 0 0 8748 2181 -9.29 98.24 3.72 -1.96
MX8 100 0 0 8B8.00 19.00 -7.00 100.00 0.00 0.00
MX9 100 0 0 100.00 0.00 0.00 101.02 6.81 -7.84
MX10 50 25 26 29.93 77.67 -7.60 b52.88 14.05  33.07
MX11 50 25 25 39.28 51.11 9.61 51.21 16.88 31.91
MX12 25 50 25 56.40 52.27 -8.67 38.64 55.21 6.14
MX13 25 50 25 2178 62.82 1540 21.94 39.64 38.42
MX14 25 25 50 23.55 66.85 9.60 29.19 3392 36.89
MXih 25 5 ] 545 5Z2.44 38.07 18.95 2287 5828
MX16 50 0 50  33.71 69.33 -3.04 6277 1.65  35.58
MX17 0 20 50 8.84 7.06 84.11 -3.39 3370 69.69
MX18 50 50 0 65.11 18.88 16.01 4,23  30.99 14.77
MX19 25 75 0 3638 80.57 -16.9, 31.96 51.59 16.45
MX26 75 25 0 9032 21.53 -11.85 79.48 L8986 -8.41
MX21 75 0 25 61.82 20.25 17.94  64.82 7.61 22.57
MX22 25 0 75 5.87 36.40 57.7% 30.06 -5.71 75.65
MX23 0 75 25 14.18 3442 5139 973  33.85 56.42
MX24 U 25 (& 7.61 58.10 34.29 13.99 25.43 56.58
MX25 33 33 33 12.158 @R.58 -8.73  4D.24 17.07 42,69
MX26 33 3z 33 36.3% 3026 3336 3097 31.66 31,37
MX27 33 33 33 2189 6341 14.69 37.11 18.42  44.4]
MXk28 34 a3 33 3123 36.37 3240  435.0% 525  48.66
MX29 67 33 0 6506 79.24 -2429 6442 3310 2.48
MX 33 33 67 0 4007 7795  .18.01 36.74  49.42 13.84
MX31 67 0 33 66.36 35.30 -1.67 64.68 27.26 8.05
MX32 33 0 67 1738 75.52 7.10  45.87 586  4b.27
MX33 0 67 33 17.55 88.20 -5.75 1.43 74.01 24,56
MX 34 0 33 67  28.23 41,92 29.85 3.68 64.52 31.80
MX35 100 0 0 7663 4495 -23.58 9066 5.25 101
MX36 0 100 0 500 84.91 18.19 -3.21 62.54 40.67
MX37 Q 100 0 3379 9577 -29.56 0.00 100.00 0.00
MX38 0 100 0 0.00 107,00 0.0 -i14.56 79.20 35.36
MX39 0 100 0 68.64 30.05 1.31 28.51 73.44 -1.95
MX40 ¢ 100 0 2584 73.31 0.85 4.83 7314 22,03
MX41 ¢ 0 100 1.37 2846 7017 -21.75 60.28  6€1.46
M¥4aZ 0 0 100 -10.45 88,77 21.68  20.19 11.74  68.07
156




significant over the rms error of 0.404 that resulted from using mean vectors as

end members.

2. Texture Plus MEAN

Data set F was also unmixed using Imbrie end members. In this case

samples MX8, MX37, and MX2 were selected by QMODEL.

Epy =[0908 0.105 —0.014]

—

Eoy =[0.462 0262 0.276] (VII - 6)

Eny =[-0.040 1.059 —0.019]

Figure V1I-11 is a plot of this polytope. Table VII-2 gives the calculated sample
compositions, which result in an rms composition error of 0.165. Again, this
error is sigrificantly smaller than the 0.211 reported when mean vectors were

utilized as end members.

D. UNMIXING WITH DENEG END MEMBERS

Full et al. (1981) introduce another extremal method for locating end
mzmbers. Whereas imbrie (1964) used extremal points as vertices of the mix-
ing polytope, Full et al. (1981) developed the DENEC procedure, which uses
extrema! samples to position the sides of the polytope rather than the vertices.
The end members are taken to be the intersections of the various sides thus de-
termined. Under this approach, end miembers do not ceincide with real samples.
The ability tc select end members well cutside of the delu cloud is the advantage
(and also the disadvantage, as we will see later) of DENEG. Pure end 1nembers
do not need to be present in the data set. Sides are | vjected to intersect at the

presumed locations of missing ¢nd members.
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F'GURE VII-11. Plot of data set F in the reduced feature space. Solid
dots indicate Imbrie end members.
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One requirement of DENEG is that all sides of the polytope must be
represented. This condition is true if each end member is missing from at ieast
one sample. Another requirement for DENEG is that an initial polytope be
available which approximately captures the shape of the data cloud. The DENEG
algorithin starts with the initial polytope and iteratively moves the sides outward
until the data cloud is enclosed, or until certain termination conditions are met.
The steps of the algorithm are given in Full et al. (1981). Full et al. (1982)
introduce FUZZY QMODEL, which incorporates clustering techniques from the
field of pattern recognition to establish the polytope for DENEG initialization.
Specificaily, Full et al. (1982) used fuzzy clustering (Bezdek, 1981) to generate
“cluster centers” within the daia cloud. The cluster centers are taken as the
initial end members, or vertices of the poiytope, which DENEG subsequentiy
expands to encompass the data. In this context, the advantageous characieristic
of fuzzy clustering is that the shape of a polygon, formed by connecting the
cluster centers, often assumes the shape of the daca cloud, thereby satisfying one

of the DENEG requirements for polytope initialization.

The reader is again referred to Full et al. (1981) for a complete description
of the steps of the DENEG algorithm. Here, it will suffice to give only brief

descriptions of the five “tuning” parameters associated with DENEG.

t; - The renge of negntive oblique space coordinate values that is considered

negligible is from 0.0 to t;. Default value for t; is -0.05.

t3 - The value of negative oblique space coordinates beyond which saraples
are considered to be “outliers,” which will be ignored in DENEG calcu-

lations. Default values for {7 is -0.25.

t3 - All vertex coordinates in the original feature space must be larger than
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t3. This parameter prohibits construction oi end members that would

be physically unrealistic in the criginal feature space. Default value for

ty 15 -0.03.

t4 - If the varimax coordinates of the new end members fall within a dis-
tance, {,, of the end members from the previous iteration, the DENEG

procedure is terminatcd. The default value for t4 18 (0.05.

ts - The maximum number of DENEG iterations. The default value for ¢y

15 10.

1. Texture Measures Only

FUZZY QMODEL was applied to data set E. Default values for ¢;,13,14,
and t; were used, but 1; wae adjusted to vary the degree to which DENEG
could expand the polytope outward from the fuzzy cluster centers. For each
value of i; the end members were construcied, the unmixing wag performed, and
the rms difference between known and calculated proportions was computed.
Figure VII-12 is a plot of the rms proportion error as a function of t; (called the
DENEG cut-off value). For reference purposes the rms error for dass means and
for Imbrie end n. .abers are also plotted in the figure. Note in Figure VI11-12
that for #3 = 0 (s.e., fuzzy cluster centers are used as end members), the error
is approximately 0.45. As {; increases and allows more polytope expansion by
DENEG, the error drops until {3 == 0.4; beyond which no further red-iction in
error occurs. This leveling off beyond 0.4 occurs because at that point, all 42
samplez are included in the DENEG celculation so that eny increasc in #; has
no effect. The mixing polytopes for t; = —0.25 and ¢; = —0.4 are shown in
Figures VII-13 and Figure VII-i4, respectively. Calculated composition values

for the t; = 0.4 case are listed in Table VII-3. Note that in Figure VI)-12
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FIGURE VI1i-13. Plot of date set E in the reduced feature space. Solid )
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indicate fuzzy cluster centers. {,=—0.25. '
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FIGURE VII-14. Plot of data set E in the reduced feature space. Solid
dots indicate DENEG end members. Crossed dots
indicate fuzzy cluster centers. t,=—-0.4.



TABLE VII-3. UNMIXING RESULTS FOR DATA SETS E AND F

DENEG End Members

Sample Known Proportions (%)  Set E - Texture Only

Set F - Texture + Mean

FY SY MY FY sY MY FY SY MY
MX1 G 0 100 16.88 418 7895  20.46 1.19 78.35
MX2 0 0 100 478 1537 79.85 12.23 4.19 83.58
MX3 0 0 109 6.12 20,59 7330 16.19 5.66  78.16
MX4 0 100 0 1402 6458 21.40 15.01 59.39 25.61
MX5 0 100 0 3741 4441 1817 28.97 56.11  14.92
MXeé 0 100 0 4785 33.09 1996 29.46 61.56 8.98
MX7 100 0 0 7430 1492 10.79 82.42 7.98 9.60
MX8 100 G 0 7497 13.04 11.99 83.47 5,09 11.44
MX9 100 0 0 85.25 0.00 1475 8456 10.43 5.01
MX10 50 25 25 2883 5418 17.00 50.66 15.65 33.69
MX11 50 25 25 38,14 3626 2560 49.63 17.85 32.53
MX12 25 50 26 4971 3631 1398 42,76  47.70 9.56
MX13 25 50 26 2488 4472 3040 30.01 3637 34.62
MX14 25 25 50 2565 47.31 27.04 34.86 30.97 34.17
MX15 25 25 50 17.62 3839 44.00 26.89 22.24 50.87
MX16 50 0 50 32.33 48.61 19.16 57.03 6.05 36.42
MX17 0 50 50  22.15 846 69.39 11.64 30.51 57.86
MX18 50 50 0 5933 13.82 2676 52,54 28.90 18B.55
MX19 25 75 0 3292 5582 11.26 37.79 44.80 17.41
MX20 75 25 0 7627 14.61 9.11 7040 27.54 2.06
MX21 75 0 25 56,93 1495 28.12 6238 10.77 26.85
MX22 25 0 75 1690 27.95 55.15  33.33 0.00 66.67
MX23 0 75 25 2281 2630 50.89 2099 30.74 48.27
MX24 0 25 75 1671 42,20 42,09 23.79 27.32 48.89
MX25 33 33 33 1539 66.70 17.91 41.82 1790 40.28
MX26 33 33 33 3845 22,62 3894 36,01 29.21 34.78
MXz27 33 33 33 2490 45.10 30.00 3966 18.98 41.36
MX28 33 33 33 3425 26,87 38.88 45.34 8.71 45.95
MX29 67 33 0 4584 54.16 000 59.91 30.64 9.45
MX30 33 67 ¢ 3573 53.94 1034 41.08 43.15 15.77
MX31 67 0 33 5838 2470 16.92 59.79 26.08 14.13
MX32 33 0 67 2048 53.29 26.23 45.22 9.19  45.b9
MX33 0 67 33 1921 6164 19.1b 17.26 62.05 20.69
MX34 0 3 67 3168 3066 37.76 18.3b 54.66 27.00
MX35 100 0 0 6571 30.56 3.73 81.37 9.16 9.47
MX36 0 160 0 1100 59.93 2907 13.33 b53.06 33.62
MX37 0 100 0 2948 65.96 456 17.65 82.35 0.00
MX38 0 100 0 591 T70.16  23.92 6.15 6596 27.89
MX39 0 150 0 6051 21.14 1835 3652 €185 1.63
MX.40 0 100 0 2651 51.47 22,02 1963 61.40 18.97
MX41 0 0 100 1469  22.90 6241 0.00 51.12 48.88
MX42 0 Q 100 000 63.19 3581 27.26 13.55 59.21
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the DENEG error line goes below the rms error level for Imbrie end members.
DENEG-derived end members are, therefore, slightly superior to the others for
this particular set of synthetic mixture image texture data. End members for

t; = —0.4 for the texture only case are

Ery =[1.065 —0.069 0.004]
Esy =[0.343 0.223 0.434] . (VII-17)

Emy =[-0210 1279 —0.069]

2. Texture Plus MEAN

e\

Data set F was also processed by FUZZY QMODEL using a range of
values for the DENEG parameter t;. The rms error values for this data set
are plotted in Figure VII-15. As previously in Figure VII-12, the error values
in Figure VII-15 decrease as the polytope is expanded. When all samples are
included, the error value becomes fixed. The difference between this case and
the texture-only case is that for texture plus MEAN, the DENEG error never
reaches the value for Imbrie end members. The polytope calculated by DENEG
for t; = 0.325 is shown in Figure VII-16. The reason for the poor performance
of DENEG as compared to exireme sarnples is apparent from Figure VIi-i6.
DENEG has projected an end member out of the positive orthant by a significant
distance. The possibility of this happening is one disadvantage of DENEG.
Polytope sides based on extreme samples may intersect at strange places. Even

more extreme examples of this problem will be seen later.

The end-mernber vectors from DENEG with ¢;3 = 0.325 for the texture
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plus mean case are
Epy =[1.077 —0.039 —0.038]
Esy =[0360 0311 0328] . (VII ~8)

Emy =[-0.219 1336 0.045]
Calculated proportion values based on these end members are given in the last

three columns of Table VII-3.

E. SUMMARY OF ANALYSIS OF SYNTHETIC MIXTURES

Unmixing calculations have been performed on the synthetic mixture im-
ages using end members generated by several methods. Based on texture meas-
ures only, image composition was calculated to an rms proportion error of 0.254
he best casc. The best cose for texture plus MEAN was an rms error of
0.165. These errors extrapolate to 0.08 and 0.05, respectively, for full-frame
KRMS images. The analysis of synthetic mixtures has suggested that natural
KRMS images can be unmixed with useful accuracy, provided the problem of un-
equal mean image intensities for diflerent ice classes can be shown to be solved

satisfactorily. Section VIII will examine the unequal means problem.

This synthetic data set revealed several things about selection of end
members. First, class means as end members have been shown to be the least
suitable in texins of accuracy of the resulting calculated proportions. This result
is somewhat surprising, since the mean vector for a given class of ice should
be the best possible estimate of what a pure sample would look like in feature
space. The other two methods of obtaining end members - one using extremal
samples as end members, the other using extremal samples to define polytope
sides — performed better than the class means as end members. The performance

of these extremal methods is also surprising because of the high noise levels in
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the data. One would expect that relatively noise-free data would be required to

obtain useful results from meihods that key on extreme samples.

DENEG (the side extreme method) and Imbries end xmembers (the vertex
extreme method) gave comnarable results. The relative performance of these two
changed with data set. So far in this study ihere seems to be no clearly superior
method. Vertex extremes appear te be more stable, having less chance of wildly
divergeat solutions. DENEG, however, cap excel if the data cloud supports an
orderly corvergeice to a reasonabie solution, which is not guaranteed. The rule-
of-thumb the author has adopted at this point is to use Imbries end members
if all end members are known to be represented in the data set. If not all end
members are present, DENEG is the only choice, but one should be aware of the

ossibility that unsatisfactory end members are possible; caution is advised.
p y Y p 3




VIII. UNMIXING WITH VARIABLE MEANS

In Section 11l several desirable characteristics of texture measures were
identified. One of the most important characteristics to linear unmixing is obvi-
ously a linear behavior in the formation of mixtures. In Section IV we found that
only 6 of the 25 candidate texture measures mix linearly. We found further that
linear behavior could be attributed to 12 texture measures if the mean intensity
levels in the components of the mixtures were identical. Qur synthetic mixtures,
therefore, were forced to uniform mean intensities so that we could take full ad-
vantage of all 12 texture measures. Now as we look toward natural mixtures
that will not have invariant mean intensities for all ice types, we must reduce
the suite of texture measures from 12 to 6, and also begin to analyze mixtures
that do not have equal means. This section addresses these questions. First,
the synthetic mixtures from the previous section will be unmixed using only the
6 more robust measures that handle mean shifts, The objective is to see how
much ice-type discrimination power is lost by discarding half of the variables pre-
viously incorporated in the analysis. Second, the 42 synthetic mixtures will be
recreated without any mean adjustient, eud the analysis repeated to measure
the degradation in unmixing performance that might result from nonadjusted
means. If both the reduction in variables and introduction of mean shifts into
the synthetic mixture have relatively minor impact on unmixing accuracy, then

we will be ready to go on to natural mixtures in Section IX.

A. REDUCTION TO S1X VARIABLES

Section IV identified MEAN, HOM3, 1OM15, LM2, LM3, LM4, and L.M5
(6 texture variables plus MEAN) as the only variables among the 25 evaluated

that would mix linearly in the most general case, where various parts of the mix-
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ture would have textures superimposed on varying overall background brightness
levels. The synthetic mixtures of data set D were reanalyzed using only these
variables. The 6 texture variables were extracted from D and SIFTed to form
data set G listed in Appendix 1. The four texture measures HOM3, HOM15,
LM2, and LM3 were combined with MEAN to form the five-dimensional SIFTed

data set, called H, listed in Appendix J.

1. Texture Measures Only

The six-dimensional data set G was processed by CABFAC in the same
manner described in associalion with previous data sets. The resulting transfor-

mation matrix that will put G intc a three-dimensional, reduced varimax feature

space is
r 0565 —0.045 0.154 7
—0.266 0.578 0.498
0540 -0.036  0.255

TV = (VIII -1)

—0.120 0.571 0.096
0239 -—0.080  0.654
L 0.497 0.575 --0.476

Figure VIII-1 is a plot of G in the reduced feature space. Figure VIII-2 shows sev-

eral unmixing polytopes calculated by QMODEL, The end-member coordinates

for the polytopes shown in Figure VII1-2 are given below,

Class means from Section VI:
Epy =[0.634 0133 0.233]
Esy =[0.350 0201 0.450]. (VIII -2)
Eyvy =[0.148 0579 0.273]

Iinbrie end members:
Epy =[0.664 0154 0.182]
Esy =[0.288 0176 0.536]. (VIII —3)
Fay =[0.093 0855 0.051]
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FIGURE VIII--1. Plots of data set G in the reduced feature space.
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DENEG end members with t; = —0.2:
Epy =[0921 0.126 0.368)

Esy = [0.516 0.332 0.790]. (VIII - 4)

Eny =[0.047 0991 0.129]
DENEG end members with t; = —0.4:

Epy =[0.966 —0.001 0.260]
Esy =[0.424 0101 0.900) . (VIII —5)

Eny =[—-0.135 0991 ~0.018]
Note that the DENEG end members with ¢t = —0.4 give the best unmixing

accuracy of 0.268, which compares favorably with the best texture-only error
value of 0.254 from Section VII, where 12 rather than 6 texture variables were
included. We conclude that the texture information lost by eliminating 6 texture

variables is not significant.

2. Texture Plus MEAN

The five-dimensional texture plus MEAN data set was also processed by
CABFAC to produce the reduced feature space data points shown in Figure

VIII-3. The transformation to reduced varimax feature space in this case is

0450 -0.106  0.539
-0.096  0.726 0.278
TV = 0520 -0.035 0.471}. (VIII —6)
—-0.135 0.606 0.109
0.706 0.308 -0.632

Figure VIiI-4 shows several unmixing polytopes calculated by QMODEL for data

set H. The end-member coordinates for the polytopes shown are as follows.

Class means from Section VI:
Epy =[0.731 0103 0.166)

Egy = [0.311 0271 0.418]. (VI - 7)
By =[0.171 0643 0.186)

174




FIGURE VII;-3.

Plots of data set H in the reduced feature space.
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Imbrie end members:
Epy =[0.725 0126 0.150]
Esy =[0.360 0.167 0.473]. (VIII - 8)
8 Epyy =[0.025 0877 0.099]
DENEG end members with { = —0.19:
Epy =[0.973 0051 0.224]
Esy =[0.574 0478 0.665]. (VIII - 9)
FBuy =[0.034 0981 0.194]
‘ DENEG end members with t; = —0.3:
Epy =[0841 0.256 —0.476)
Esy =[0676 —0.045 0.736]. (VIIT - 10)
h Epy =[-0.192 0952 0.240]

Note that the Imbrie end members give best unmixing accuracy of 0.157, which

is slightly better than the best texture plus MEAN error value of 0.165 from

k Section VII, where 10 texture measures plus MEAN were included. Again the

conclusion is that elimination of 6 texture measures does not significantly impact
“ the accuracy of calculated image proportions.
Note in Figure V1II-4, when t; = —0.3, the DENEG sclution loses the

initial polytope shape and pushes an end member off the edge of the plot. This

possibility of producing end members well away from the date cloud requires

caution in using DENEG to select end members.

B. MIXTURES WITH MEAN SHIFTS

Synthetic mixture images MX1 through MX42, shown in Figures VII-1

through VII-7, were recreated by mcsaicking pure samples as before, but this
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time the adjustment of mean intensity to a value of 128 prior to mosaicking

was not pertormed. These synthetic mixtures with varisble mean intensitics are
called NX1 through NX42. Figure VIII-5 is a representative example of the NX
series of mixture samples. The rest of the NX images are not shown here, since
they are similar to Figures VII-1 through VII-7, except that the background
brightness level is difterent for each component of the mixture. The 6 texture
values calculated for the NX series of synthetic images are listed in Appendix
K and are given the name data set I. The MEAN variable assumes the same
value for the NX series of mixtures as it did in the MX series, since the previous
MEAN values were calculated without the mean adjustment being performed. A
SIFTed version of I is called J and is listed in Appendix L. Likewise, a SIFTed
data set containing HOM3, HOM15, LM2, LM3, and MEAN is calied K and is

listed in Appendix M.

Table K-1 contains values of lexture measures from synthetic mixtures
with variable means. If Table K-1 is compared with the comparable values in
Table F-1, where mean intensilies were normalized, then one will find little change
in the numer; :al values of the texture measures. Since the values of the raw deata
are only slightly altered by introducing shifts in the mean image intensity for
each constituent of the mixture, then it is perhaps obvious that the NX series of
synthetic mixtures can be unmixed with approximately the same accuracy as the
MX mixtures. However, for the sake of completeness, limited unmixing results

will be presented for the NX series of mixtures with variable means.

1. Texture Measures Only

Figure VIII-6 is a plot of data set J in the reduced varimax space. Imbrie

¢nd members and DENEG end members were applied to the unmixing of these
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FIGURE VIiII-5. Typical synthetic mixture image (NX2) without mean
intensity level adjusted prior to mosaicking.
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FIGURE VIII--6. Plots of data set J in the reduced feature space.



data and resulted in the polytopes and rms proportion errors shown in Figure
VI111-7. The raw data to reduced feature space trunsformation matrix for data

set J is

0.606 —0.021 0.127 1
-0.290  0.539 0.471
0.485 —0.067  0.342

TV=1_0004 o588 0.053 (VIIT -11)
: 0.185 —0.069 0.674
L 0,521 0.545 —0.434.
> The end members plotted in Figure VIII-7 are given below.
Imbrie end members:
Epy =[0.890 0.386 0.226]
Fsy = [0.378 0.296 0.873]. (VIII - 12)
&\ Epy =[0.116  0.991  0.060 ]
DENEG end members with t; = —0.38:
Epy =[0.916 0.003 0.402)
Esy =[0.429 0235 0.873) . (VIII —13)
Emy =[-0.025 0.996 0.083]
A DENEG polytope that encompasses the entire data cloud could not be achieved
in this case. The DENEG iterative algorithm did not converge to a reasonable
polytope when t; was large enough to include all data points. Irnbrie end mem-
bers, therefore, are the only valid comparison between these data and the cor-
: responding data based on mixtures with uniform mean brightness. For varying
‘) means the unmixing accuracy is 0.296 compared to 0.275 (Figure V11I-2) for
:. ® mixtures with preadjusted means. The difference between these two accuracy

4 figures is small as expected from the observed similarity in raw data.
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2. Texture Plus MEAN

Figure VII1-8 is a plot of data set K. Again, Imbrie end members and
DENEG end members are applied and the resulting polytopes are shown in

Figure VIII-9. The transformation matrix from CABFAC ior data set K is

0.901 0.046  0.090
—0.033 0.698 —-0.403
TV = 0.421 0.083 —-0.257 | . (VIII —14)
—0.096  0.548 -0.163
—0.002 0452  0.858

End members from QMODEL for this case are as follows.

Imbrie end members:

Epy =10.992 0.109 —0.050]
Esy =[0.691 0.659 0.283] . (VIII —15)
Epy = [—0.061 0995 —".020]
DENEG end members with {; = —0.3:
Epy = (0997 0064 —0.053]
Esy = [0.668 0422 0614] . (VIII - 16)

Enmy = [-0.138 0988 —0.076]
Again, attempts at DENEG end members that encompassed all samples did not
end in convergence, so only Imbrie unmixing is compared with previous results.
Here when texture and MEAN are considered jointly and background intensity
is allowed to vary in the mosaick, the Imbrie unmixing accuracy is 0.164, which
is once again very close to the 0.157 value (Figure VIII-4) that resulted when
means were preadjusted. Qur conclusion is that there i» no significant loss in
accuracy of the calculated proportions when the mean intensity is allowed to

vary. The objective of this section is therefore satisfied.
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FIGURE VIII-8. Plots of data set K in the reduced feature space.
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3. Unmixing with All Variables of Data Set I

Although accuracy values do not indicale any problem with data set K,
the shape of the data cloud in that case is troublesome. Note the Imbrie polytope
in Figure VIII-9. The triangle is relatively collapsed so that the second-year end
member is approaching the midpoint of the first-year/multiyear mixing line. This
same problem (but more severe) was encountered in Section VI (see Figure VI-
3). In the previous encounter we found that as long as either the LM4 and
LM5 pair or MEAN was included in the data set, the polytope would expand
to a more acceptable shape. In Figure VIII-7, when LM4 and LM5 are present,
a nearly equilateral polytope results when Imbrie end members are connected.
Figure VIII-9 does have MEAN included which has previously been sufficient
for a solid three-end-member polytope, but it apparently is not sufficient in this
case. It seems appropriate in view of this problem to include LM4, LM5, and
MEAN in the same data set to see if an improved polytope can be obtained. This
combination of variables was analyzed and discarded in Section VI because of the
noisy nature of LM4 and LM5. However, since we have gone to larger images,
the noise levels in the data are reduced, so another look at using all variables is

in order.

Date set L is a SIFTed version of data set 1 with all 7 variables included.
These data are listed in Table N-1 in Appendix N. Figure VIII-10 is & plot of the
data. The data cloud in this figure tends to be more two-dimensional, and Figure
VIII-11 shows an expanded polytope for the Imbrie end-member case. However,
the accuracy is worse (0.231) for this expanded polytope than for the collapsed
case in Figure VIII-9 (0.164). Apparently, the degradation from noise in LM4

and LM5 exceeds the benefits resulting from an improved polytope shape.
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FIGURE VIII—1Q. Plots of data set L. in the reduced feature space.
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Many texture investigators (e.g., Laws, 1980) stop at this point, having
demonstrated their algorithms on synthetic mixtures of image texture. Indeed,
the primary objective of this study has been realized. The global approach to im-
age texture has been developed and has been successfully applied to test imagery.
However, analysis of complex natural texture composites, such as those encoun-
tered in remote sensing, is not an easy problem. Many techniques demonstrated
on synthetic textures cannot be readily applied to practical applications. The
complex issues of practical image texture analysis cannot be addressed within
the scope of this work. Even given the time, the present KRMS data set would
not be adequate te completely illustrate the global approach to analysis of nat-
ural mixtures. However, we do want to at least introduce the natural mixture
problem; do some very limited work with this type of mixture, and point the

way toward further work required to progress in this area. Section IX covers this

topic. 7




IX. NATURAL MIXTURES

A. SIMPLE MIXTURES

When 512 x 312 pixel full frame XRMS images are condisered, the types
of mixtures availabie in this data set will not support a complete global texture
analysis. There are no images in the data set that consist of only a sngle ice
type. Therefore, we have no way to locate Imbrie end members for unmixing
via extreme samples. Likewise, there are no images totally void of first-year ice.
DENEG end members, therefore, cannot be defined using edge-extreme methods.
However, four images containing simple mixtures of first-year and multiyear ice
are available. Some insight into natural mixtures is available by anelysis of these

four images shown in Figures IX-1 through IX-4.

1. Building the Polytope from Large Synthetic Mixtures

One possibility to explore is to fill in the data set with some large synthetic
mixtures. These mixtures could be used to fill in the holes in the polytope that
cannot be defined from a limited supply of natural mixtures. These images
should be 512 x 312 pixels like the natural mixtures to reduce noise levels, since
the polytope will be based on so few points. Six such large synthetic mixtures,
labeled BX5 through BX10, were constructed from the synthetic mixtures of
Section VIII. Full 512 x 312 mosaics were not possible with the data at hand,
but large mosaics ranging from 256 x 256 up to 512 x 256 pixels were constructed
for each pure ice type and for 50-50 mixtures of FY/SY, FY/MY, and SY/MY.
The six large synthetic mixtures, therefore, defined all three veriices and all
three edges of the three-end-member polytope. The hope was to superimpose
the polytope thus defined over the natural mixture images and calculate ice-type

proportions on that basis. Figure IX-5 is the large multiyear mosaick, which
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FIGURE IX—1. KRMS image BX1 containing & natural mixture of FY (80%)
and MY (10%) ice. Image size is 312 samples by 512 lines.
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FIGURE IX-2. KRMS image BX2 containing a natural mixture of FY (40%)
and MY (60°%;) ice. Image size is 312 samples by 495 lines,




FIGURE IX-3. KRMS imnage BX3 containing a natural m xture of FY (69%)
and MY (31%) ice. Image size is 312 samp:es by 512 lines.




FIGURE IX—-4. KRMS image BX4 containing a natural mixture of FY (60%)
and MY (40%) ice. Irmage size is 312 samples by 512 lines.
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FIGURE IX-3. S?rnthetic KRMS mixture imnage consisting entirely
of MY ice. Image size is 256 samples by 384 lines.
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is shown as a representative exanple of images BX5 througk BX10. Tubiz O-1
in Appendix O gives the calculated values of texture measures for these large

images, which have named data set M.

It is most informative here to first consider texture variables HOMS3,
HOM15, LM2, and LM3, plus MEAN. These five variables have been extracted
from Table O-1, SiFTed, and placed in Tabile P-1 (Appendix P) as data set N.
CABFAC was used as before to transform data set N into a three-dimensional
feature space. Figure 1X-6 is a plot of data set N in this reduced feature space. !
the figure the polytope constructed from the large synthetic mixtures is shown.
The first observation is that the natural mixtures (triangular points in Figure
IX-6) do not fall on the FY/MY mixing line as expected. They tend to fall in a
line (see visual linear fit represenied by the dotted line), but the mixing line for
naiural mixtures is approximately porallel to, but offset from, the FY/MY edge

of the polytope.

An offset is not the only difference illustrated in Figure IX-6. The four
natural-mixture points span multiyear concentrations of 10% to 60% or a range
of 50%. The FY/MY edge of the polytope spans a range of 100% in multiyear
concentration, yet its distance on the plot is approximately the same as for a
50% range of natural mixtures. Therefore, a scale, as well as an offset difference,
seems to exist between texture measures calculated from synthetic and natural
mixtures, so the idea of unmixing natural mixtures using a synthetic mixture

polytope must be abandoned.

It 1s interesting to note how precisely positioned the six synthetic points
are with respect to the polytope. With itnage sizes as large as these, the excessive

noise we saw initially when working with 64 x 64 pixel images has been virtually
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FIGURE IX-6. Plots of data set N in the reduced feature space.
Triangles repreaent natural FY/MY mixture images.
Crossed circles represent large synthetic mix—
tures. Folytope is constructed by connecting large
] synthetic mixtures of a single ice type.
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eliminated. The polytope has been formed by connecting the pure ice type
vertices exactly. A comparison of the edge p;)mts with their expected positions
midway between vertices will give an indication of the unmixing accuracy that
can be achieved with these larger imeages, which, on the average, were equivalent
to 300 x 300 pixels. In Figure IX-6 the calculated proportions agreed with the

known proportions of the edge poi-ts to an rms error of 0.039.

2. Two-End-Member Analysis of the Natural Mixtures

Since the natural mixtures BX1 through BX4 do fall in a line, one might
get some estimate of possible unmixing accuracy by attempting unmixing cal-
culations along that line. We have no end membere for the dotted mixing line
shown in Figure I1X-6. However, one can determine if the relative positions along
that line are related in a consistent manner to first-year/multiyear ice propor-
tions. To determine whether consistency is present, each sample’s position was
projected onto the dotted mixing line, and that position was measured relative
to some reference point on the line. For convenience, the lower sampl= in Figure

1X-6 was chosen as the reference point. Measured distances for the four points

were 0.0, 0.87, 2.00, and 2.32 inches, which corresponded to multiyear propor-
tions of 0.10, 0.31, 0.40, and 0.60. A linear least-squares curve fit was applied to

these four data points, resulting in the equation.
MY proportion = (distance x 0.1857) + 0.1116. (IX -1)

This equation, being a best fit relationship of mixing line distance to multiyear
proportion, can be used to estimate proportions based on distance. The calcu-
lated proportions fromm Eq. (IX-1) for the four samples in question were 0.112,

0.273, 0.483, and 0.542 leading to an rms proportion error of 0.054 for unmixing
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of these four sampies. It would be wrong to place too much emphasis on accuracy
values based on four points. However, it is interesting to note that this value
is close to the accuracy value of 0.05, which would be predicted for these large
images based on the 128 x 128 synthetic mixtures in Section VIII, plus sample
size considerations. We therefore have some evidence that these simple natural
mixtures are nol, significantly more difficult to unmix than were the synthetic

mixtures.

The same analysis of data set M was attempted using texture measures
only. The six texture measures were SIFTed to form data set O which is tabulated
in Appendix Q. Figure IX-7 is a plot of that data. Again, as in Figure IX-6, a
polytope based on large synthetic mixtures BX5 through BX10 is plotted, as well
as a visual fit of a mixing line through the natural samples. In this texture-only
case, the natural mixing line and the FY/MY side of the polytope are very close.
The offset observed in Figure IX-6 is not present here. However, the scaling
discrepancy remains. The polytope spans a 100% range of concentrations in
approximalely the same distance as is covered by a 50% concentration range in

natural mixtures.

Unmixing of the natural mixture samples was attempted again using pro-
cedures previously described. In Tigure 1X-7 the measured distances were 0.0,
0.79, 1.86, and 2.29 inches. These measurements led to the following least-squares

predictor of multiyear proportions.
MY proportion = (distance ¥ 0.1926) + 0.1146. (IX -2)

Resulting unmixed proportions of multiyear ice were (via Eq. (IV-2)) 0.115,
0.267, 0.473, and 0.556, leading to an rms proportion error of 0.048. This uninix-

ing accuracy is well below the value of 0.095, which would be predicted for these
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FIGURE IX-7.

Plots of data set O in the reduced feature space.
Triangles represent natural FY/MY mixture images.
Crossed circles represent large synthetic mix—
tures. Polytope is constructed by connecting large
synthetic mixtures of a single ice type.




images based on texture-only results in Section VIIL. Texture-only accuracy here
is as good as the texture plus MEAN case. This equality of the two cases is
inconsistent with results in previous chapters where texture only was worse than
texture plus MEAN. However, little significance rests with numbers based on
four samples. This limited study of simple natural textures indicates that simple
natural textures can possibly be as easily and accurately unmixed as synthetic

mixtures.

We can look again at how well the polytope sides in Figure IX-7 match
the 50-50 synthetic mixture samples that should fall at the midpoints of the
sides. For texture only in Figure IX-7, the calculated proportions agreed with

the known proportions of the edge points to an rms error of 0.074.

3. Unmixing Accuracy as a Function of Image Size

In Section VI the assumption was made that unmixing accuracy for global
texture analysis would vary as 1 over the square-root of the number of pixels in
the image, or in other words, as 1 over the dimension of a single side of a square
image. That assumption was put forward based on the facts that all variables
were normal and that all unmixing procedures are linear. At this point we have
data available to confirm th’s assumption. We have error values for 64 x 64
images from Section VI, 128 x 128 images from Sections VII and VIII, 512 x
312 natural images, and 256 x 384 synthetic images in this section. If we tale
the best texture plus MEAN error values obtained for each image size (whether
Imbrie, DENEG, or class mean end members) and plot these accuracy values as
a function of image size, then the plot shown in Figure IX-8 is obtained. For
comparisc™, a 1 uver sample size curve is shown as a dashed line. A perfect

match with the dashed curve would not be expected, since some of the square
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points are for pure samples while others are for mixtures, and some rmixtures
are synthetic while others are natural. Also the relative representations of each
texture type is different for each data set. In spite of these diflerences, the points
fall close enough to a S~! behavior, where S is the length of the image side,

that this assumed relationship to image size can be considered experimentally

confirmed.

B. COMPLEX MIXTURES

Texture types in natural images will not always occupy clearly defined
areas with simple boundaries, as was the case in Figures IX-1 through IX-4.
Figure IX-9 is an example of such a mixture. Note the two hoxes drawn on the
figure. Both boxes include multiyear ice. However, the upper box is positioned
on & large solid multiyear floe, while the lower box containa numerous small
pizces of multiyear ice. Clearly the fragmented nature of the ice in the lower box
imparts an entirely different textural appearance than is present in the upper box,
even though both are filled with multiyear ice. When the ice mixtures become
complex through fracturing or through formation of rubble fields consisting of
small chunks of assorted ice types, ice classification based on image texture would

be expected to encounter problems.

Thes= problems are not believed to be insurmountable. One solution is
. \ggested and llustrated here. The proposal is to preprocess the image to iden-
tily areas of complex textures. These arcas can then be replaced by imbedding
“blotches” of uniform gray to replace the complex areas. When the unmixing
is performed, these uniform areas will fall out of the analysis as an additional
end member. That is, rather than three end members representing first-year,

second-year, and multiyear ice, CABFAC would indicate & four-dimensional fee-
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FIGURE IX-8. Complex KRMS natural mixture of FY and MY ice.
Boxes denote a solid MY flow and MY rubble.
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ture space where three of the end members represent ice types and the fourth end
member, which could be called “unclassifiable” would represent the previously

masked areas of complex structure.

An alternate approach would be to just leave the complex areas as they are
and let the unmixing procedure assign end members to these directly. The author
does not believe that this approach would be satisfactory. The wide variety of
types of complex texture would require numerous end members which would lead
to a difficult interpretation of the results. It seems preferable to preprocess and
join all complex, unclassifiable areas into a single texture (uniform gray) and

then proceed with unmixing.

To show that such a preprocessing step might be feasible, the following
steps were applied to Figure IX-9. First, a cluster shade edge detector (Holyer
and Pecckinpaugh, 1989) was applied to the image with an edge threshold that
detected fractures and rubble but did not have the sensitivity to detect texture
within floes. (This new edge detector was an outgrowth of the GLC matrix-based
texture analyses described in Section III). Edges thus detected were dilated for
several iterations to make the edge lines wider. The dilation process nearly
filled in complex areas with high edge density such as a rubble field. All image

pixels under the dilated edge mask are set to a uniform mid-range grey value (in

this case, 128). Figure IX-10 shows the resulting image. Rubble areas have been

accurate proportions for the first-year ice and the remaining first-year floes, plus
one more proportion for the masked areas of unmanageable complexity. What hes
been shown here as an exemple is a simple preprocessing step. Certainly better
methods for masking complex ice areas could be developed. Perhaps something

as simple as variance in a local neighborhood could be used to delineate complex
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FIGURE IX~-10. Natural mixture image of Figure IX—-9 with complex
rubble areas covered with a uniform gray leval.




textural areas.
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X. CONCLUSIONS AND RECOMMENDATIONS

Conclusions resulting from this study will be divided into two categories.
The first deals with the global texture analysis paradigm, which was the major
thrust of this work. These conclusions cover matters of broad applicability to the
field of image processing. The second category deals with information learned

about sea ice as a result of using imagery of that type as test data.

A. THE GLOBAL TEXTURE ANALYSIS PARADIGM

e The global approach to texture analysis has been developed and applied to
a test data set with sufficiently promising results that it can be concluded

that the approach may have merit for meny image texture problems.

e Both mandatory and desirable characteristics of texture measures were enu-
merated. Of 25 candidate texture measures evaluated, none met all of the
desirable and mandatory characteristics, and only two — local homogeneity
and Laws’ energy masks — possessed the mandatory characteristics, which
included correlation with ice type and linear behavier under formation of
mixtures. Here, of course, the key item is the linear mixing property. In-
vestigation of additional texture measures that exhibit this characteristic

would support further exploitation of the global texture analysis approack.

e The SIFT procedure was developed and applied here to deal with the
nonconstant-sum nature of image texture variables. Since this work was
performed, a variable-sum version of CABFAC and QMODEL is reportedly
available (Full, 1988). The analysis described here should be repeated using
these new programs, If the SIFT used here resulted in significant loss of
ice-type information, the repeated analysis with the new code would give

better results, indicating even more promise for the global techniques.
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e The global appreach should be applied to other texture data sets to see if it

does indeed have broad applicability.

e Further study should be initiated to deal with the problem of complexity

occurring in natural images.

e Failure to sclve the complexity problem does not eliminate the global method
from practical application. There may be certain applications, industrial
inspection and control, for example, where the scenes are always simple

mixtures and this technique is applicable without presimplification.

¢ Global unmixing of image texture is inexorably linked to a trade-off. Pro-
portion accuracy can be exchanged for positional uncertainty. If the global
aree is large, proportions can be extracted quite accurately, but one does
not know where within the global area the particular texture in question
is located. Conversely, as the global area is made smaller to pinpoint the
location of a feature, the proportion filled by that texl-;ure feature can be
measured with less certainty. This situation suggests that a pyramid ap-
proach could be advantageously applied. Large areas could be analyzed for
maximum accuracy followed by analysis of progressively smaller areas in
selected parts of the image where it is judged to be advantageous based on

criteria that would be wuique to a given application.

B. SEA ICE SCIENCE

e Proportions of first-year, second-year, and multiyear ice types in samples
extracted from KRMS images can be calculated with useful accuracy using

linear unmixing of globally determined texture measures.

s Eppler et al. (1984) studied classification of ice types in the same KRMS
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data set. Their classification work involved thresholding on imege bright-
ness. They concluded that brightness temperature thresholding alone was
not adequate for classification of ice types. The recommendation in that
report was that image texture be included, and provided the stimulus for
the present study. We demonstrated here that texiure can lead to calcula-
tion of accurate (accuracy depending on image size) ice-type proportions.
Furthermore, the accuracy has been shown to improve by an approximate
factor of two when mean brightness levels are added to texiure data. Un-
fortunately, Eppler et al. (1984) did not give any quantitative estimates of
image composition accuracies resulting from the thresholding method, so

that direct comparison could be made with the present results.

e The proporiion errors as a fuiiction of image size that have been derived here

indicate what order of spatial scales are required to adequately characterize
ice types. The 312 x 512 pixel images that resulted in proportion errors of

approximately 0.05 represent 6.4 km? of ice surface.

¢ The most critical hurdle to practical application of the global technique to
ice analysis 1s believed to be the development of a priuprocessing step that

will identify and simplify areas of complex textural structure.

o Assuming the above can be actomplished, this texture analysis scheme should
be applied to another KRMS data set, where adequate representation of the

various ice types will permit complete unimixing using only natural images.

o The real future of ice-texture analysis “es with SAR rather than with passive

microwave sensors. The KRMS is & research tool, but operationally, the

SAR is the sensor of the future. The ERS-1 satellite will have a SAR in

space in 1991 and for the forseeable future thereafter. NASA is establishing
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a receiving facility in rairbanks, Alaska, to receive that data over a large
portion of the Arctic. The Navy Polar Qceanography Center in Suitland,
Maryland, is planning to use this SAR data to generate its operational
ice products for the U.S. Navy. Clearly, if the texture analysis techniques
developed here could be extended to SAK ims:t ry, then the potential payoff

would be large in terms of practical applicatio: ..
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APPENDIX A
THE UNIVARIATE MAXIMUM BAYESIAN CLASSIFIER

The univariate normal distribution, with mean p and variance o2, has the

probability density function, P(z),

Y]

P(z) = L7, (4-1)

where z = Ei—"l If we consider ! data sets each representing one of { possi-
ble normally distributed classes, a probability density function, Pi(z), could be

calculated for each of the ! classes,

1 L
P(z) = e (4 -2

-‘/21ra;"’ i ’

where y; and o, are the mean and standard deviation of the I*} class, respectively,

and z = g’—;’ﬂ). The maximum Bayesian classification rule is to assign an

unknown sample &, to cdass [ if

Pi(zy) > Pu(zn), for all I # m. (A-3)

The threskid on z separating classes | and m is given by the equation

Py(2) - Pom(z) = 0. (A —4)

The = value at which Eq. (A-4) is true can be considered the threshold,
Ti,m, on z, above which sample z, would be classified as belonging to class m
and below which z,, would be assigned to class . An expression for Tj,, can be
obtained by substituting expressions for Pj(z) and Pp,(z) from Eq. (A-2) into

Eq. (A-4). This procedure results in a quadratic form for i, .
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aT}, + Wiy + c= 0, (4 -95)

where

1 1

6= — —~5

o2, o}

s=2( b -t
ol o3,

2 2
P F‘l ol
= = __2ln —
¢ 0127; 012 na'fn

The quadratic formula can be applied to give two possible values for T},, .

—b+ /b2 — 4ac
2a )

ﬂm. = (A ~- 6)

Normally only one of the two rocts celculated from Eq. (A-6) will satisfy the
condition p; < Tiym < pm. The root satisfying this condition is the proper
threshold for a maximum Bayesian classifier separating classes | and m. Here all
classes are assumed to be of equal a priors probability. The procedure would be
the same, but the resulting expressions for a,b, and ¢ would be Vmore complex if

different a priori probabilities were assigned to each class.

The performance of the maximum Bayesian classifier can be summarized
by a confusion matrix, C = ¢j, where the 1,5 element is the probabilil:
classifying & sample from class i into dass j. If classification is perfoct, O i won
identity matrix. For imperfect classification, the location avd magnitude o0 e
nonzero, off-diagonal elements indicate the expected classification ercor vies ‘oo

separation of each of the possible 1,7 class pairs.

Consider the special case of three classes of equal a priori probabilities

where classes are numbered 1, 2, and 3 in order of increasing mean valuer of
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x within the class. Thresholds Tj; and 733 are then derived according to Eqgs.

(A-5) and (A-6). The confusion matrix for this special case cen be calculated by

Tiz2
Gi =/ Pi(z)da

ci2=1—¢y) ~ ¢ (A“7)
3 =/ P.-('.c)d:n.
Taa

Confusion matrices have the following mathematical properties.

Z E cij = number of classes (A4 -8)

3 J

qu=1 (4 ~9)

2

« "« overell cassification accuracy, 4, can be calculated from the confusion ma-

i.» vy the following equation:

! 4= DG Tr C

- — . _ \
; > E,‘ cij number of classes (4 -10)

Figure A-1 shows the normal distributions by ice type for the Laws’ Mask
s, TM?2, texture data from Table C-1. The figure also shows the interclass
»+ _an decision thresholds defined by Eqs. (A-5) and (A-6). The calculated

cessiticriion accuracy (Eq. (A-10)) for this case is 0.801.
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LAWS' MASK 2 TEXTURE MEASURE

Distributions of the Laws' Mask 2 texture measure values
from data set A for first—year (FY), second—year (8Y),
and multiyear (MY) ice types. Dashed lines mark the
maximum Bayesian decision boundaries between FY/SY
and SY/MY classes. Classifcation accuracy for this
texture measure is 0.801.



APPENDIX B
TESTING DATA SET NORMALITY: THE Q-Q PLOT

The Q-Q plot is a plot of the sample quantile versus the quantile one
would expect from to observe if the observations are normally distributed. For
details on Q-Q plots see Johnson and Wichern (1982). To summarize we list the

following calculations leading to the Q-Q plot.

1. Arrange the original observations, X;, to put X;,X,,...X,, in order

of increasing value.
il
2. Calculate P, P;,...P, according to P; = (—;12

3. Calculate the standard normal quantiles q3,92,...gn by integration

of the normal distribution function

RN L
= T = e? dz
[ \//2_7'(‘ f_oo )

where z = &;—ﬁ)—

4. Plot the data pairs (¢;,X;) thereby producing the Q-Q plot.

If the values of X; are normally distributed, the (g;,X;) points will fall in
a straight line. “Straightness” of the Q-Q plot is therefore a useful measure of
the normality of the distribution of X;. The linear correlation coefficient of the
(gi,X;) points is a good measure of siraightness. Figure B-1 is given to illustrate
the appearance of a Q-Q plot. This figure is for the Laws’ Mask 2 texture
measure, LM2, listed in Table C-1. Separate Q-Q plots are shown for the second-
year and multiyear ice types. This example is typical of the texture measures
considered in this study. The linear correlation coefficients for for second-year

and multi-year ice types in Figure B-1 are 0.95 and 0.98, respectively.
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FIGURE B-1. Q-Q plots for the Laws' Mask 2 texture measure calculated
from data set A. Second—year (SY) ice samples indicated
by + and multiyear (MY) samples by o. Correlation coef—
ficients for SY and MY ice are 0.95 and 0.98, respectively,




APPENDTX C

DATA SET A

Data set A consists of numerical values for each <. the 25 candidate tex-
ture measures listed in Table III-1 for each of the fifty 64 x 64 pixel KRMS image
samples identified in Figures IV-1 through IV-10. Table C-1 contains these nu-
merical values. The values of the candidate texture measuies varied by 23 orders
of magnitude, so formatting of these data in tabular form was difficult. The tex-
ture variables were therefore scaled so that each contained only one digit to the
left of the decimal point. In other words, each variable was scaled by some power
of 10, so that its largest value in the data set would be less than 10 but greater
than 1. The scaled data .re given in Table C-1. However, scale factors required
to convert the tabular data to their original values are included as the second
column on each page of the table. For example, the MEAN variable for sample
FY1 is given as 0.447. The scale factor (S.F.) corresponding to the MEAN i
10%. Thus, the true value of MEAN for sample FY1 is 0.447x10%, or 44.7.

Variebles LPR3 and LPR15 in Table C-1 are logarithmically transformed
versions of variables PR3 and PR15. See Section IV-B for a discussion of the

reason for and exact nature of this transformation.




TABLE C-1, VALUES OF TEXTURE MEASURES FOR DATA SET A

MEAS. S.F. FY1 FY2 rys FY4 FY5 ¥Yé FY7 SY1

MEAN 10° 0.447 0.419 G.460 0.467 0.341 0.466 0.432 1.748
VAR 10? 0.474 0.391 0.372 0.314 0.333 0.360 0.406 0.699
SKEW 10° 3.170 3.350 3.012 2.9561 3.008 3.263 3.096 2.723
KURT 100 2.850 3.340 2.920 2.770 2.980 3.160 3.010 3.150
INR3 10? 0.453 0.475 0.481 0.430 0.417 0.437 0.462 0.600
INR15 10 0.776 0.680 0.672 0.535 0.5669 0.568 0.612 1.334
PR3 10¢ 0.060 0.043 0.030 0.019 0.026 0.028 0.042 0.166
PR15 108 0.036 0.026 0.020 0.014 0.017 0.022 0.030 0.062

HOM3 107! 1.626 1.584 1.650 1.748 1.770 1,743 1.590 1.566
HOM15 10! 1.310 1.434 1.351 1.539 1.492 1515 1.608 1,037
ENG3 107 2,215 2,570 2530 2.825 2.855 2.715 2.430 1.676
ENG15 10-3 2.030 2.48¢  2.440 2.83b 2.840 2.655 2.415 1.490
ENT3 10° 6.352 6.230  6.232 6.100 6.125 6.171 6.277 6.631
ENTI5 10° 6.426 6.260  6.240 €.096 6.108 6.184 6.274 6.733
COR3 10-! 5.258 3.887 3.643 3.196 3.7172 3.950  4.352 5.732
COR16 107! 2,027 1.331 1.131 1.484 1.410 2.193 2,703 0.490
LMi 10%° 0.158 0.114  0.106 0.108 0.082 0,181 0.1567 0.451
LM2 10%® 0.126 0.092  0.118 0.064 0.088 0.082  0.112 0.376
LM3 1013 0.344 0.338  0.341 0.418 0.387 0.442  0.498 0.745
LM4 1013 0.664 0.646 0.601 0.695 0.675 0.798 0.857 0.761

LMb 10° 2275 2.728 2.359 2,678 2.602 2.920 3.215 2.425
LM6 108 1.759 2.076 1.735 1.766 1.700 1.878 2,223 1.573
LM7 107 2,258 2.383 2.206 2.211 1.939 2.116 2.698 1.769
EDEN 10! 1.911 1.631 1.818 1.732 1.744 1.73b 2.0156 2,197
MBRL 10° 3.626 3.321 3.480 3.208 3.691 3.611 3.490 4.759
LPR3  10° 2.187 1.853 1.493 1.037 1311 1.460 1.830 3.136
LPR16 10° 1.648 1.350 1.088 0.731 0.92b 1.183 1.493 2,219
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TABLE C-1. continued

MEAS. S.F. SY2 SY3 SY4 SVYs SY6 SY7 SY8 SY9
MEAN 102 1.751 1.734 1.778 1.795 1.784 1.720 1.761 1.744
VAR 10? 0.790 1444 1703 0548 0525 0.594  0.926 1212
SKEW 10° 2.544 2399 1983 2787 3317 2631 2779 2355
KURT 10° 3.530  3.240 3.950 3020 3250  3.160 2490  3.350
INR3  10° 0.584 0.818 0776  0.500 0548  0.430  0.448  0.710
INR15  10? 1.380 2.710 2.525 0949 0989  1.162  0.934 1.904
PR3 10¢ 0234 0754 1323 0088 G083 0.114 0246 0573
PR15  10° 0.116 0266 €547  0.050  0.035  0.044  0.159  0.212
HOM3 10! 1.498 1.362 1.444 1.628 1.563  1.696 1.690 1.366
HOMI15 107! 1.054  0.714  0.867 1.189 1.154  1.147 1177 0.911
ENG3 1073 1.695 1170 1335 2,006 20656  2.005  1.585 1.340
ENGIS 1073 1.415  0.940  1.065 1.860  1.886  1i.760  1.460  1.195
ENT3 10° 6.653  T7.000 6.91B  6.472 6.448 6.471  6.360  6.879
ENTI5 10° 6.796  7.163  7.081 6537 6507 6.620 €.736  6.965
COR3 107! 6.307 7167  7.741 5,630 4824 5976 7506  T7.097
COR15 10! 1.721  0.677  2.950 1460  0.461  0.418  5.404 1.636
1M1 10%° 0.449  1.000 1.901 0311  0.198 0.388 0666 0,603
LM2 10'¢ 0.35b  0.426 0.839 0206 0.286 0.333  0.i181  0.374
LM3 1013 0.716  0.828 1.248 0.602 0.577 0.646 0,491 0.734
LM4 1013 0571 0.867 0.843 0678  0.608 G.647  0.606  0.525
LM5 10¥ 1.621 2723 2187 2154 1.872 1.849 1.911 1.804
LMé 108 1.193 1.783 1.548 1519  1.201 1220 1.228  1.359
1LM7 107 1.657  2.300  1.984 . 1.781 1.594  1.513 1.369  1.922
EDEN 10 2.186  2.446  2.244 1.842 1924  1.857 1.826 2347
MBRIL 10° 4566  5.191 5.181 4300  4.342  4.911 4969  5.60]
LPR3  10¢ 3548 4718 52080 2570 2511 2828 3508  4.443
LPR15  i0° 2.846  3.672 4397  2.004 1.648 1876  3.161  3.449
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TABLE C-1. continued

MEAS. S.F. SY10 SY11 SY12 SY13 SY14 SY15  SY16  SY17
MEAN 107 1.762 1.815 1.858  1.627 1.914 1.504 1.499  1.480
VAR 10? 1.261 1.346 0458 1586 0.385 0538  0.504 0.458
SKEW 10° 2,004 1687  2.467 2260 2741 2723 2857 2937
KURT 10° 3020 5480 3770 3.680 3.430 3160 2800  3.040
INR3  10° 0.866 0.604 0.485 0.768 0.442 06510 0494  0.506
INR15 102 2416 1806  0.802 2445 0712 1108 0882  0.796
PR3 10° 0662 1288 0076 1.067 0.043 008 (062 0049
PR15  10° 0.237 0440 0.041 0.48  0.020 0.037 0.032  0.029
HOM3 10t 1.302 1598 1,580  1.3563 1.676 1.598 1.636  1.593
HOM15 10! 0.759 1073  1.310 0.792 1.406 1.128 1.204 1312
ENG3 1073 1.160 1.626 2335  1.146 2666 2055 2060 2,220
ENGI5 103 0.958 1436 2235 0976 2526  1.840 1.960  2.165
ENT3 10° 7.003 6713 6334 7006 6208 6444 6.414  6.356
ENT16 10° 7.157 6810 6.368 7.135  6.233 6543 6.454  6.379
COR3 107! 6630 7816 4793 7.603 4324 5269  5.092  4.449
CORI15 1071 0.941 3378 1.667 2584 0.762  0.06b6 1.188  1.291
LM1 103%0 0.841 0451 0.161 1.260 0.082 0.299 0259  0.168
LM2 i0° 0720 0144 0.11%8 G.481 0118 6238 O0.148  0.183
LM3 1012 0.838 0404 0505  0.887 0.409 0576 0.401  0.592
LM4 10'3 0.811 0.614 0.68 0.761 0.530  0.695 0508  0.788
LMB 10° 2404 2235 2440  1.921 2123 2397 2287 2673
LMé6 108 1.6508 1.534 1.766 1.276 1694  '1.807 1,701 1.960
LM7 107 1.891 1892 2243 1678 2376 2143 2116  2.380
EDEN 10! 2.608 2018  1.85¢  2.267 1.835  1.868 1.843  1.878
MBRL 10° 4958 5020 3.632 6.812 3440 4.011 4157  4.142
LPE3 10° 4424 5263 2423  5.065 1.863 2536 2219 1,084
LPR15 10° 3560 4179  1.806  4.278 1.088  1.703 1.668  1.460
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TABLE C-1. continued

MEAS. S.F. SY18 SY19  SY20  SY21  SY22 SY23 SY24  SY25
MEAN 102 1.484 1.623 1.634 1.666 1716 1,586 1.634 1.607
VAR 10? 0.465  0.566  0.752 1.198  0.620 0.940 0816  1.014
SKEW 10° 2,061  3.287 2704 2852 3160  3.038 2423 2939
KURT 10° 2950 3730 3280 3400 3350 4360 3.870  3.060
INR3 102 0.496 0,501 0.488 0694 0570 0.584  0.605  0.654
INR15 107 0.847 1.080 1.167 2207 1.197 1.690 1.584  2.211
PR3 10° 0.063 0.114 0210 0583  0.123  0.459  0.308  0.356
PR15  10° 0.027 0.045 0113 0236 0.053 0.147 0.083  0.103
HOM3 10-! 1.604 1.639 1.615 1.421 1.488 1.516 1.515 1.466
HOMIs 10-} 1.287 1.183 1106  0.800 1077 0.993 1.019  0.782
ENG3 10-? 2.185  2.095 1.755 1.270 1.830 1.665 1.685  1.435
ENG15 10-32 2.060 1.900 1.470 1.000 1.666 1.386 1.5626 1.130
ENT3  10° 6.370 $.436 6607 6911 6546 6689 6666 G.EB24
ENT5 109 6.412  6.527 6766  T7.107 6.63€  6.837 6.748 6,992
COR3 107! 4549 5577 6788  7.169 5434 6,874 6376  6.808
CCRI15 J0-1 0.772 0298 2722 1.326  0.414 0828 0000  0.000
LM1 10%°¢ 0.105 0.201 0.417 1.104 0.308 0.556 0.295 0.799
M2 1016 £0.234  0.260 07205 G471 0398 0379 0301  0.494
LM3 1013 0.632  0.554  0.441 0.009 0.634 0552  0.59z  0.682
LM4 108 0.812 0.613 0.680 0.933 0.668 0.553 0.649  0.629
LM5 10° 2.260  2.045 2456 2682  2.271 1.885 2439 2012
LM3s 10° 1.489 1.392 1.614 1.659 1.672 1.293 1.884 1.396
LM7 107 1.964 1.548 1.763 1.839  2.091 1.529 2486  1.824
EDEN 10! 1.851 2130 2131 2.341 2.153  2.013 1997 2139
MBRIL 10° 4004 4417 4779 5674 4452 4714 4331 5110
LPR3  10° 2.063 2828 3439 4460 2904  4.22t 3.822  3.964
LPR15 10° 1.388 1.899 2,820  3.556 2063  3.083 2511 2727
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TABLE C-1. continued

MEAS. S.F. MYi MY2 MY3 MY4 MYb MY6 MY7 MY8

MEAN 10? 1.126 1.061 1.071 1.149 1.136 1.243 1.097 1.048
VAR 10? 1.473 1.438 1.408 1.177 1.138 1.626 2.660 2416
SKEW 10° 2.172 2.466 2.5669 2,193 2.609 2.761 2.540 2.855
KURT 10° 3.630 3.290 2.960 5.180 2.970 2.450 3.208 2.800

INR3 10* 0.927 0.767 0.736 0.822 0.872 0.967 1.296 1.273
iNR15 107 2.792 2.569 2.571 2.268 2.267 3.703 4.248 4.557
PR3 108 0.857 0.848 0.808 0.793 0.380 0.745 2.742 1.984
PR15 108 0.219 0.276 0.336 0.211 0.128 0.186 0.637 0.715

HOM3 107! 1.235 1.303 1.386 1.302 1.241 1.188 1.110 1.093
HOMI15 1071 0.778 0.704 0.870  0.840 0.786  0.624  0.599  0.582
ENG3 1072 1.155 1.116 1.100 1.220 1150 0325  0.745  0.730
ENGib 10-3 0.995 0.945 0.900 1.070 1.035 0.795  0.67¢  0.650
ENT3 10° 7.013 7.011 7.031 6.931 6970 7.176  7.386  7.395
ENT15 10° 7.111 7.149 7.205 7.028 7.062 7294 7457  T.487
COR3 10~} 6.862 7.399 7.549  6.550 6.151 7.028  7.550  7.386
COR16 10! 0.094 0.683 1.794  0.147 0.000  0.000 1.370  0.504
LM1 10% 0.953 0.583 1.208  0.419 0.480 1,027 1.325 1.538
LM2 101® 0.768 0.485 0.486 0.447 0.682 0901 1.075 0,974
M3 1012 1.297 0.639 0.622  0.702 1.008 1.124 1.468 1.176
LM4 1012 0.979 0.654 0.611 0.792 0834 0955  0.990 1.387

LMb 10° 2.438 2.040 1.811 2.764 2.938 2,960 3.106 2.350
LM6 108 1.525 1.351 1.367 1.640 2.189 1.923 2,288 1.498
M7 107 1.872 1.475 1.828 1.721 2.600 2,182 2.676 1.883
EDEN 10! 2.b84 2.486 2.498 2,539 2.680 2.518 2.932 2.986

MBRL 10° 5.686 6.312 6.084 4.831 5.147 6.817 6.159 7.082

LPR3 10° 4.846 4.836 4.787 4,768 4.032 4.706 6.009 5.685
LPR156 10° 3.481 3.713 3.906 3.444 2.944 3.318 4.822 4.665
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TABLE C-1. continued

31

MEAS. S.F. MY9 MY10 MY1l MY12 MY13 MYi4 MY15 MY16
r MEAN 102 0993  1.429 1425 1.394 1608 1.538 1567 1.532
VAR 10? 1.771 1.263 2380 2528 0616 1.258  1.668  2.205
SKEW 19° 3064 2179 1736 2185 2601 2449 2.986  2.355
KURT 16° 2750 3920 5470 4450 2930 3.330 3.120  3.800
INR3  10°? 1092 0685 1,107 1.016 0479 0811 0906  0.837
INR15 102 3.067 2080 3248 3594 0931 2120 2952  3.643
P PR3 108 0975 0.827 3.746 3.284 0.115 0549 0970  2.095
PR15  10% 0.397 0404 1444 1.023 0069 0264 0.445  0.607
HOM3 10! 1120 1.52) 1.245 1629  1.632  1.4i7 1.288 1.276
HOMI15 107! 0.687  0.921 0722 0.731 1213 0.843 0713  0.641
ENG3 16°3 0.890 1360 1015  0.920 1.200  1.300 1110  0.935
ENG15 10°3 0790 1.13¢ 0895 0.770  1.926 1025  0.900 0.790
L ENT3 10° 7228 6865 7.136 T.216 6505 6920 7.061  7.196
ENTi15 10° 7.308 7.016 7.220 7358  6.568  7.081  7.213  7.330
COR3 107! 6.891  7.451 7.667 7.957 6176 6.77z  T.279  7.840
COR15 101 1.263 2,120 2594 2551 2670  1.794 1496 1,079
ILM1 1020 1.151 0698 1704 1441 0280 1.078 1.627  1.73%
LM2 1019 0947 04926 0.778 0.498  0.206 0.6564  0.504  0.720
® LM3 1018 0.834 0602 1.181 0.827 0.448 1.677 1.606 1.242
LM4 1018 0.927 0.653 0921 0.791 0645  1.184 1.328  0.861
LM5 10° 2.646 2063 2398 2805 2631 2706  3.203  2.103
L.M6 108 1.586  1.206 1.570 1.896 1952  1.621 1867  1.342
LM7 107 1.726 1213 1939 2181 2351 2019  2.047 1.654
EDEN 10! 2915  2.218 2650 2673 1901 2366 2480 2512
L MBRL 10° 5959  6.130 6,145 6481 4438 5868 6.054  6.087
LPR3 10° 4975 4810  6.321  6.189 2837 4400 4970 5740
LPR15 10° 4076 4.094 5367 5023 2326 3.668  4.195  4.501
)
@
¢
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TABLE C-1. continued

MEAS. SF. MY17 MYI18
MEAN 10° 1.436  1.466
VAR 10? 1.025 1.214
SKEW 10° 2,148  2.802
KURT 10° 4140  3.250
INR3 10? 0.671  0.750
INR15 10? 1533 1800
PR3 108 0.543  0.587
PRIS 108 0.159  0.288
HOM3 10! 1418  1.379
HOM15 107! 0.994 0.874
ENG3 10-2 1.510 1.230
ENGI5 10-8 1420  1.115
ENT3 100 6.772  6.955
ENT15 10° 6.811  7.022
COR3 10-! 6.749  7.029
COR15 10-! 1724  2.663
1M1 1030 214 0.534
M2 1018 0317  0.43%2
LM3 1013 0.772 0579
LM4 1013 0.877 0687
LM5 10° 2.830 2.071
LM6 102 1.869 1.518
LM7 107 2.025  1.853
EDEN 10! 2.222 2279
MBRI 10° 4660  4.351
LPR3 1n° 4389  4.484
LPR15 10° 3.161  3.755
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APPENDIX D

DATA SET B

Data set B consists of a subset of the candidate texture variables contained
in datc set A. Twelve of the original 25 texture variables in data set A were
climina'ed in the formation of data set B for reasons delinealed in Section IV.
- MEZAN las also been eliminated, since it is not a true texture measure. The 12
.- wic rneasires of data set B have been processed by the scale, invert, then force
~ .anf o mation described in Section V. This data matrix, therefore, contains row

sums with a constant value of 1.0.
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TABLE D-1. VALUES OF TEXTURE MEASURES FOR DATA SET B

VAR

INR3

INR156 HOM3 HOM15 LM1 LM2 LM3 i1M4 LM56 EDEN MBRL

FY1
FY2
FY3
Fy4
FY5
FYé6
FY7
SY1
sy2
5Y3
SY4
SYs
SYeé
sY7
SY8
SY9
SY10
SY11
5Y12
SY13
SY14
SY15
SY16
SY17
SY18
SY19
SY20
SY21
5Y22
SY23
SY24
S5Y256
MY1
MY2
MY3
MY4
MY5
MY6
MY7
MY8
MY?9

0.012
0.006
0.004
0.000
0.001
0.004
0.008
0.028
0.033
6.079
0.100
0.017
0.016
0.020
0.045
0.064
0.064
0.072
0.011
0.085
0.005
0.017
0.014
0.011
0.010
0.018
0,031
0.065
0.022
0.043
0.036
0.048
0.082
0.075
0.082
0.060
0.060
0.095
0.160
0.129
0.096

MY10 0.067

0.166
0.172
0.164
0.180
0.182
0.184
0.185
0.134
0.131
0.089
0.101
0.156
0.145
0.154
0.166
0.112
0.078
0.129
0.165
0.107
0.169
0.165
0.161
0.166
0.166
0.147
0.165
0.118
0.139
0.132
0.133
0.116
0.070
0.096
0.104
0.088
0.082
0.064
0.000
0.004
0.036
0.116

0.010
0.007
0.006
0.000
0.002
0.002
0.004
0.034
0.034
0.089
0.084
0.018
0.019
0.026
0.017
0.067
0.074
0.052
0.012
0.083
0.008
0.025
0.016
0.012
0.013
0.022
0.026
0.072
0.028
0.047
0.044
0.066
0.093
0.079
0.082
0.070
0.073
0.134
0.148
0.144
0.098
0.064

0.136
0.134
0.145
0.177
0.182
0.181
0.141
0.118
0.097
0.065
0.088
0.136
0.118
0.148
0.162
0.368
0.049
0.123
0.130
0.067
0.150
0.129
0.141
0.137
0.130
0.131
0.130
0.083
0.098
0.102
0.106
0.088
0.03b
0.049
0.070
0.050
0.037
0.024
0.004
0.000
0.006
0.106

0.041
0.020
0.036
0.000
0.009
0.005
0.006
0.089
0.082
0.142
0.119
0.063
0.069
0.068
0.065
0.110
0.130
0.080
0.043
0.136
0.024
0.074
0.062
0.044
0.046
0.061
0.076
0.133
0.081
0.093
0.092
0.126
0.132
0.137
0.114
0.119
0.134
0.162
0.157
0.144
0.138
0.108

0.165
0.181
0.174
0.180
0.182
0.178
0.184
0.1356
0.129
0.082
0.000
0.150
0.160
0.138
0.117
0.120
0.093
0.131
0.172
0.062
0.173
0.162
0.169
0.176
0.170
0.162
0.137
0.076
0.147
0.120
0.149
0.097
0.086
0.114
0.062
0.133
0.133
0.082
0.051
0.029
0.064
0.110

0.010
0.005
0.009
0.000
0.004
0.603
0.008
0.062
0.046
0.058
0.130
0.039
0.037
0.044
0.020
0.051
0.105
0.013
0.010
0.072
0.009
0.030
0.015
0.022
0.029
0.032
0.024
0.069
0.066
0.061
0.040
0.068
0.iid
0.065
0.068
0.062
0.104
0.140
0.160
0.130
0.136
0.043

0.172
0.184
0.176
0.172
0.175
0.174
0.169
0.118
0.116
0.104
0.054
0.138
0.140
0.128
0.163
0.118
0.088
0.166
0.168
0.103
0.165
0.142
0.168
0.150
0.134
0.137
0.166
0.089
0.131
0.137
0.137
0.119
0.047
0.121
0.128
0.119
0.085
0.070
0.032
0.054
0.068
0.134

0.008
0.026
0.016
0.036
0.032
6.060
0.074
0.046
0.009
0.065
0.062
0.030
0.016
0.023
0.016
0.000
0.053
0.017
0.032
0.048
0.001
0.034
0.016
0.066
0.057
0.017
0.030
0.082
0.028
0.0056
0.024
0.019
0.087
0.023
0.016
0.051
0.061
0.085
0.086
0.144
0.072
0.026

0.102
0.056
0.096
0.073
0.070
0.035
0.000
0.084
0.161
0.051
0.109
0.114
0.133
0.142
0.141
0.148%
¢.081
0.101
0.088
0.142
0.119
0.089
0.101
0.083
0.103
0.120
0.080
0.058
0.1060
0.136
0.082
0.120
0.081
0.11b6
0.133
0.048
0.030
0.027
0.011
0.078
0.065
0.121

0.025
0.029
0.012
0.000
0.002
0.000
0.043
0.063
0.058
0.094
0.069
0.015
0,026
0.017
0.013
0.682
0.098
6.038
0.018
0.074
0.014
0.017
0.016
0.022
0.016
0.062
0.064
0.084
0.056
0.036
0.036
0.062
0.113
0.0984
0,099
0.106
0.116
0.106
0.163
0.144
0.146
0.065

0.154
0.179
0.164
(.183
0.159
0.174
0.178
0.101
0.105
0.080
0.083
0.123
0.121
0.093
0.094
0.069
0,087
0.088
0.161
0.012
0.153
0.137
0.133
0.140
0.136
0.112
0.100
0.063
0.114
0.099
0.120
0.081
0.060
0.031
0.042
0.095
0.085
0.012
0.038
0.000
0.04b
0.041
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TABLE D-1. continued

VAR

INR3

INR15 HOM3 HOM156 LMi1 LM2 LM3

LM4

LM5

EDEN MBRL

MY11 0.148
MY12 0.146
MY13 0.023
MY14 0.073
MY15 0.103
MY16 0.129
MY17 0.052
MY 18 0.061

0.036
0.049
0.167
0.100
0.079
0.066
0.122
0.099

0.113
0.118
0.018
0.072
0.108
G.124
0.043
0.050

0.038
0.123
0.143
0.087
0.061
0.043
0.082
0.067

0.143
0.131
0.061
0.132
0.154
0.161
0.098
0.110

0.018
0.039
0.160
0.082
0.027
0.0156
0.159
0.119

0.118
0.067
0.025
0.106
0.148
0.104
0.043
0.058

0.062
0.098
0.165
0.000
0.009
0.062
0.116
0.130

0.077
0.048
0.025
0.139
0.166
0.063
0.070
0.011

0.086
0.040
0.066
0.058
0.001
0.112
0.041
0.114

0.122
0.116
0.024
0.092
0.106
0.100
0.067
0.069

0.040
0.024
0.123
0.067
0.047
0.041
0.107
0.112

-
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APPENDIX E

DATA SET C

Data set C consists of 10 of the texture variables from data set B. LM4
and LM5 from B are not present in C. In addition to the 10 texture measures,
this data set includes the mean image brightness value, MEAN. The 11 variables
in data set C have been processed by the scele, invert, then force transformation
described in Section V. This data matrix, therefore, contains row sums with a

constant value of 1.0.
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TABLE E-1. DATA SET C
VAR INR3 INR15 HOM3 HOMI15 LM1 LM2 LM3 EDEN MBRL MEAN

FY1 0.013 0183 0.011 ¢.151 09046 0,183 0.012 0.1%¢ 0027 0.171 0.013

r Fy2 0.007 0.186 0.008 0.144 0.022 0.185 0.006 0.199 0.032 0.193 0.010

FY3 0006 ©.181 0.007 0.161 0.038 0.193 0.010 0.195 0.013 0.182 0.015

Fy4 0000 €198 0000 0.195 0,000 0.199 0.000 0.1%0 0.000 0.202 0.016

FYs 0002 0.203 0.002 0203 0.0]0 02063 0606 0.195 0.002 0.177 0.000

Fye 0.004 0200 0.002 0.197 0.006 0.194 0.004 0.189 0.000 0.18% 0.016

) FY7 0008 0.195 0.004 0.151 0.007 0.197 0.01¢ 0.181 0.046 0.190 0.012

Syl 0.027 0.131 0.033 0116 0.087 0.132 0.061 0.115 0.061 0.099 0,148

SY2 0034 0134 0.035 0099 0084 0.132 0.048 0.119 0060 0.108 0©.148

SY3 0.077 0.087 0.086 0.064 0.138 0079 06.067 0.101 0.091 0.078 0.142

SY4 0.102 0103 0.085 0.089 0.121 ¢0.000 0.132 00656568 0.670 0.085 0.157

L SYb5 0.0i7 0153 0.017 0134 0.062 0148 0.039 0136 0.016 90.122 0.157

SY6 0.015 0.144 0.019 0.118 0.068 0.159 0.037 0139 0026 0.120 0.155

SY7 6.020 0.157 0.026 0.151 0.069 0©.141 ©0.046 0.130 0.017 0.095 0.148

SY8 0.045 0.167 0.017 0.152 0.066 0.117 0.020 0.163 0.013 0.094 0.156

SY9 0.064 0.112 0.0567 0.068 0.116 0120 00561 0.118 0.082 0.068 0.150

SYio 0064 0077 0.07¢ 0.645 0.i28 6.052 G.i64  0.087 0.667V 0.688 0.142

Syi1 0.070 0.125 0050 0.118 0.077 0.127 0.013 0.151 0,036 0.084 0.149

’ Sy12 0.011 0.156 0.011 0.123 0.041 0.164 0.009 0.150 0.017 0.1563 0.165

SY13 0099 0©.112 0.087 0.070 0.143 0065 0.075 0.108 0.078 0.013 0.150

Syl4 0.005 0.160 0.007 0.142 0.023 0.164 0.009 0.1566 0.014 0.156 0.165

Syi1s5 0.016 0.154 0.024 0.128 0.074 0.161 ¢€.030 0.141 0.617 0.136 0.127

Syi6 0014 0G.159 0.015 ©0.139 0.061 0.167 0.014 0.166 0.015 0.131 0.i28

SY17 0.011 0164 0.012 0.136 0.043 0.174 0.021 0.148 0.021 0.138 0.132

L) Sy1s 0.011 0162 0.0i4 0.134 0.047 0.176 0.030 0.139 0.017 0.14] 0.129

SYyi9 0.018 0.148 0.022 0.132 0.06Ff 0.1563 0.032 0137 0.0562 G113 0.133

Sy2o 0.031 0.151 0.026 0.126 C©6.074 0.134 0.023 0.151 0052 0.097 0.135

SY21 0.065 0.17 0.071 0083 0.13. 0.075 0.069 0088 0.083 0.062 0.144

SY22 0.022 0.136 0.027 0.096 0.080 0.145 0.055 €.129 0.056 0.112 0.144

S§Y23 0.044 0.133 0,047 0.103 0.034 0.122 0.051 0.138 0037 0.101 0.130

o SY24 0.035 0129 0.043 0102 0.089 0.145 0.038 6.133 0.635 0.116 ©.135

5Y256 0.048 0118 €067 0.089 0.128 0095 0.069 0.120 0.0562 0082 0.130

MY! 0089 0076 0,102 0038 0.144 0.094 0.126 0.061 0.123 00656 0.090

MY2 0080 0.103 0.085 0.062 0.147 0.122 0.(°0 0.130 0.101 0.033 0.077

MY3 0.089 ¢©.112 0083 0076 0.123 0.067 0.0.Y 0.138 0,107 0.046 0.08]

MY4 0.061 0.08% 0071 0.051 0.121 0.135 0.06. 0.121 0107 0.096 0.085

L MY5 0.060 0083 0.074 0.037 0.135 0.134 0.105 0.086 0.116 0.085 0.086

MY6é 0096 0.064 0.136 0.024 0.165 0.083 0.143 0.071 0.108 0.012 0.099

MYT7 0.163 0.000 0151 0.004 0.160 0.052 0.163 0.033 6.156 0.039 0.078

MY8 0.153 0.004 0.171 0000 0.171 0.034 0.154 0.064 ¢6.171 0.000 0.077

; MY9 0.104 0.039 0.105 0.007 0.148 0.069 0.146 0.106 0.168 0.049 0.069
MY10 0.069




TABLE E-1. continued

VAR INR3 INR15 HOM3 HOMIis LM1 LM2 LM3 EDEN MBRL MEAN

MY11 0.156 0.038 0.118 0.039 0.150 0.019 0.124 0.065 0.128 0.642 0.121
MY12 0.144 0.049 0.116 0.121 0.129 0.039 0.066 0097 0.1156 0.024 0.102
MY13 0.022 0.158 0.017 0.135 0.068 0.152 0.024 0.156 0.023 0.116 0.137
MY14 0.078 9.107 0.076 0.093 0.141 0088 0.113 0.000 0.098 0.061 0.147
MY15 0.105 0.082 0.111 0.063 0.158 0.028 0.152 0.010 0.109 0.049 0.143
MY16 0.137 0.069 0.131 0.046 0.159 0015 0.110 0.055 0.106 0.044 0.128
MY17 0.052 0.121 0.042 0.082 0.097 0.1588 0.043 0.115 0.066 0.106 0.118
MY18 6.062 0.100 0.050 0.068 0.112 0.121 0.068 0.132 0.070 0.113 0.115




APPENDIX F

DATA SET D

Data set D consists of 42 synthetic nuxture images. Table F-1 contains nu-
merical vaiues for mean intensity and for each of the 12 selected texture measures
(VAR, INR3, INR15, HOM3, HOM15, LM1, LM2, LM3, LM4, LM5, EDEN, and
MBRL) for each sample in data set D. The mixtures are labeled MX1 through
MX42, and are 128 x 128 pixels in size. The KRMS synthetic mixture images
are shown in Figures VII-1 through VII-7. Formatting and scaling of varishles

in this table is the same as in Table C-1.

Table -1 also contains the compositions of each mixture by ice type.

These are given at the bottom of the table.




TABLE F-1. VALUES OF TEXTURE MEASURES FOR DATA SET D

MEAS. SF. MXI MX2 MX3} MX4 MXE MX6 MX7  MX8 w

MEAN 10° 1.200 1.286 1.365 1.728 1.736 1.656 0.418 0.413
VAR 10? 1.706 1.797 1.836 1.619 0.671 0.651 0.392 0.378
INR3 102 1.021 1.085 1.068 0.670 0.62b 0.545 0.453 0.468
INR15 10? 2.969 3.014 J.042 1.649 1.254 1.163 0.676 0.653
HOM3 107! 1.278 1.233 1.244 1.464 1.520 1.573 1.672 1.636 oy
HOM15 107! 0.779 0.732 0.733 0.280 1.136 1.138 1.408 1.415 e

LM1 1020 0.903 1.163 1.153 0.619 0.339 0.354 0.148 0.148
LM2 1016 0.857 0.843 0.76% 0.403 0.345 0.247 0.103 0.104
LM3 1018 1.306 1.292 1.096 0.786 0.657 0.569 0.399 0.399
ILM4 1018 1.041 1.016 0.928 0.707 0.710 0.691 0.685 0.685

LMbs 10° 2.858 2.768 2.779 2.123 2.265 2.607 2.621 2.558
EDEN 10! 2.648 2.722 2717 2.194 2.078 1.992 1.842 1.897
MBRL 10° 6.143 6.482 6.115 5.661 4.326 4.604 3.673 3.722
% FY 0 0 0 0 0 0 100 100
% SY 0 0 0 100 100 100 Q 0
% MY 100 100 100 0 0 0 0 0
TABLE F-1. continued ' v-
MEAS. S.F. MX9 MX10 MXl11 MX12 MX13 MX14 MX15 MX16
MEAN 102 0.427 0.931 0,939 1.332 1.323 1.190 1.277 0.783
VAR 102 0.356 0.928 0.830 0.570 1.042 1.101 1.634 0.887
INR3 10? 0.442 0.632 0.642 0.525 0.659 0.704 0.843 0.640 o
INR15 102 0.592 1.607 1.646 0.997 1.974 1.867 2.402 1.530 b e

HOM3 107} 1.700 1.516 1.511 1.601 1.480 1.617 1.438 1.607
HOM15 10-! 1.493 1.094 1.107 1222 0.993 0882  0.979 1.123
LM1 1027 0.133 0.561 0.487 0.291 0.733 0.633 1.019 0.434
LM?2 1018 0082 0275 0348  0.226 0409 0372  0.456 0.331
LM3 1018 0.433 0.5629 0.651 0.575 0.757 0.640 0,783 0.650
LM4 1013 0.739 0650  0.737 0703 0766 0715 0770 0655

LMb 10° 2742 2218 2408 2367 2337 2339 2526 2.277

EDEN 10 1.818 2168  2.060  1.961 2,168 2239 2337  2.202

MBRL 107 3617 4384 4449 4156  5.059 52656 5373  4.330

% FY 10¢ 50 50 25 25 25 25 50 o
% SY 0 26 25 50 50 26 25 0
% MY 0 25 25 25 25 50 50 50 '
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o TABLE F-1. continued

MEAS. SF. MX17 MXi8 MX19 MX20 MX21 MX22 MX23 MX24

® WMEAN 102 1.446 1.010 1.387 0.785 0.728 1.029 1.5566 1.44b
VAR 102 1.550 0.614 0.691 0.362 0.709 1.438 1.206 1271
INR3 102 0.896 0.543 0.569 0.448 0.572 0.879 0.829 0.846
INR1E  10° 2.558 1.093 1.204 0.645 1.207 2,636 2.350 2.091

HOM3 107! 1402 1.564  1.545 1.683 1.663 1.329 1.348 1.352
HOMI15 10! 0.900  1.222  1.161 1.445 1.252  0.873 0.840 0.8956
¢ LM1 1020 1.049 0.353  0.381 0.104 0.442 0.933 0.736 0.711
LM2 1018 0.711 0.236 0274 0.095 0.264  0.51} 0.562 0.548
L.M3 1013 1171  0.605  0.590  0.408  0.620 1.036 0.935  0.893
LM4 1013 0971 0.788  0.652 0678  0.789  0.896 0.896  0.795

LM5 10° 2.823 2.639 2.163 2.606 2.615 2.542 2.561 2.403
EDEN 10! 2.395 2.022 2.107 1.824 2.044 2,473 2.383 2.402
@ MBRL 10° 6.116 4,142 4.511 3.531 3.992 5.277 5311 5.401
% FY 0 50 25 75 7% 25 0 0
% SY 50 60 75 25 0 0 75 25
% MT 50 0 0 0 25 75 25 75
®
TABLE F-1. continued
10 MEAS. S.F. MX26 MX26 MX27 MX28 MX29 MX30 MX31 MX32

MEAN 1.214 1.105 1.004 0.894
VAR 1.010 0.984 1.041 0.512
iNR3 0.655 0.697 0.792 0.493
INRI15 1.787 1.781 1.9956 0.818
HOM3 1.494 1.415 1.457 1.629
HOM15 1.045 0.961 1.083 1.284
LMI1 0.734 0.567 0.541 0.208
LM2 0.383 0.411 0.484 0.151
LM3 0.776 0.689 0.776 0.428
L.M4 0.847 0.728 0.780 0.601
L.M5 2.5672 2.364 2.639 2,172
EDEN 2.17% 2.298 2.253 1.892
MBRL 4.658 4.9b4 4.659 4.025

% FY 33 33 33 67
% SY 33 33 33 33
% MY A3 33 33 0




TABLE F-1. continued

MEAS. SF. MX33 MX34 MX356 MX36 MX3IT MX3i8 MX39 MX40

MEAN 102 1.646 1.579 0.448 1.753 1.765 1.7985 1.492 1.660
VAR 10% 1.046 1.116 0.424 1.176 0.732 1.296 0.499 0.914
INR3 10? 0,632 0.657 0.459 0.691 0.495 0.676 0.501 0.662
INR15 107 1,513 1.653 0.6567 2.013 1.020 1.833 0.906 1416

HOM3 107! 1.622 16256  1.652  1.468 1.640  1.461 1.608 1.541
HOMI15 10! 1.035 1045  1.417 0911 1.167  0.989 1.230 1.034
LMI 1020 0.655  0.674 0.168  0.840  0.525 1.017 0.264 0.634
LM2 1018 0.360 0377  0.103  0.485 0.280  0.414 0.204 0.336
LM3 1013 0709  0.859 0.368 0.845 0582  0.734 0.547 0.638
LM4 1012 0706  0.851  0.627 0.729 0652 0693  0.753 0.723

LMb 10° 2173 25611 2.466 2.180 2.087 2171 2.654 2.3i5
EDEN 10! 2.083 2215 1.847 2.266 1.866 2.186 1.859 2.186
MBRL 10° 5.608 5.646 3.731 5.382 5.3568 6.073 4.363 5.566
% FY 0 0 100 0 0 0 ¢ 0
% SY 7 33 0 100 100 100 100 160
Yo MY 33 67 0 0 0 6 O it

TABLE F-1. continued

MEAS. S.F. MX41 MX42
MEAN 10? 1.561 1.104
VAR 10% 1.498 1.486
INR3 10? 0.778 0.794
INR16 107 2.429 2.427

HOM3 107! 1.405 1.310
HOMIis 10! 0.863 0.791
LM1 1030 1.269  (.886
LM2Z 10!® 0.567 0.5625
1LM3 1018 1.144 0.687
LM4 1013 0.986 0.674

LM5b 10° 2.665 2.333
EDEN 10 2303 2.524
MBRL 10° 6.571 6.340
% FY 0 0
% SY 0 0
% MY 100 109
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APPENDIX G

DATA SET E

Data set E consists of a subset (the 12 texture meesures) of the variables
contained in data set D. MEAN is not included in E since it is not a true iexture
measure. The 12 texture measures of data set E have been processed by the
scale, inveri, then force transformation described in Section V. This data matrix,

therefore, contains row sums with a constant value of 1.0.




TABLE G-1. DATA SET E

VAR INR3 INR15 HOM3 HOM15 LM1 LM2 LM3 LM4 LM5 EDEN MBRL

MX1 0.143 0.016 0.1562 0.015 0.147 0.049 01567 0000 0.167 0.000 0.144 0.022
MX2 0.159 0.000 0.161 0.000 0.163 0.0J5 0€.160 0002 0.154 0.019 0.163 06.005
MX3 o0.161 0.004 0.161 0004 0.160 0.012 0.142 0.037 0119 0.017 0.160 0.024
MX4 0.073 0.1056 0.070 0.081 0.i10 0.091 0.066 0.090 9.038 0.157 0.068 0.049
MX5 0.035 0.116 0.044 0.100 00676 0.130 0054 0.112 0.040 0.127 0.047 0.120
MX6 0.035 0.146 0.040 0.126 0081 0.136 0.0356 0.138 0.036 0.080 0.033 0.112
MX7 0.004 0.178 0.006 0.170 0.020 0.174 0.003 0.176 0.036 0.066 0.005 0.173
MX8 0.003 0.178 0.005 0.160 0.019 0.179 0.603 0.179 0.035 (.049 0©.016 0.174
MX9 9.009 0.187 0.000 0.187 0.000 0.182 ¢.000 0.174 0.05¢ 0.029 0.000 6.182
MX10 0.061 0.110 0.065 0.095 0.082 0.097 60.037 0.130 0017 ¢.132 0.061 0.113
MX11 0.052 0.113 0.07¢ 0.087 0.083 0.11¢ 0.0556 0.i114 0.0681 0.097 0.044 0.114
MX12 0.024 0.146 0.028 0.132 0.060 0.141 0.029 0.131 0.039 0.108 0.027 0.134
MX13 0.074 0.105 0.080 0.087 0.104 0.073 0.066 0.093 0.059 0.109 0.061 0.079
MX14 0.077 0.090 0.079 0.125 0.102 0.083 0.056 0.108 0.039 0.104 0.071 0.065
MX15 0.131 0.062 0.122 0.072 0.111 0.035 0.078 0082 0.083 0.072 0.0956 0.066
MX16 0.056 0.108 0.060 0.082 0.076 0.112 0.049 0.126 0.019 0.119 0086 0.115
MX17 0.138 0.050 0.137 0.062 0.133 0.032 0.138 0.026 0.143 0.008 0.109 0.026
MX18 0.030 0.147 0.036 0.120 0.062 0.137 0.033 0131 0974 9060 0.039 0.i40
MX19 ¢.037 0.130 0.040 0.108 0.071 0.123 0.039 0.124 0.019 0.148 0.062 0.110
MX20 0.001 0.179 0.004 0.175 0.011 0.181 0.001 0.174 0.032 0.060 0.001 0.181
MX21 0.041 0.138 0.043 0.1i8 0.0556 0.122 0.039 0.126 0.074 0.055 0.043 0.146
MX22 0.114 0.050 0.130 0.032 0.127 0.045 0.106 0.045 0.106 0.066 0.113 0.067 1
MX23 0.090 0.063 0.113 0.039 0.135 0.072 0.097 0.062 0.106 0.061 0.098 0.065 ]
MX24 0.099 0.060 0.098 0.041 6.126 0.077 0.096 6.071 0©.071 0.096 0.104 0.062
MX25 0.068 0.095 0.078 0070 0.106 0.089 0.051 0.123 0.004 0.150 0.085 0.083
MX26 0.072 0.109 0.080 0.091 0€.096 9.076 0062 0.092 0.092 0.062 0.0656 0.103
MX27 0.068 6.096 0.077 0.062 0.111 0096 0.065 0.105 0.048 0,103 0.085 0.085
MX28 0.076 0.074 0.093 0.078 0.088 0.102 0,083 0082 0.066 0.068 0.078 0.102
MX29 0.018 0.164 0.015 0.142 0.046 0.152 0.013 0.156 0.000 0.1561 0.014 0.140
MX30 0.037 0.145 0.035 0.126 0.070 0.120 0.033 0.139 0.0156 0.134 0.060 0.098
MX31 0.036 0.157 0.624 0.145 0.037 0.132 0.0256 0.144 0051 0.081 0.021 06.147
MX32 0.082 0.101 0.081 0065 0.106 0.08¢ 0.35 0.124 0.020 0.108 0.088 90.079
MX33 0.077 0.117 0.062 0.103 0.089 0.086 0.0568 0.106 0.040 0.150 0.049 0.053
MX34 6.086 0112 0.073 0.i105 0.0%9 0.08¢ 0.083 0.080 0.025 0.077 0.074 0,051
MX36 0.008 6,176 0.005 0.162 0.018 0.170 0.003 0.18C 0011 0.093 0.006 0.169
MX36 0.087 0.098 0.091 0.079 0120 0043 0081 0077 0046 0.140 0.078 0.061
MX37 0.043 90.156 0.030 0.148 0.073 0.109 0.042 0131 0.020 0.170 G.009 0.068
MX3€ 0.108 0.109 0.086 0083 0.113 0037 0.072 0.104 0036 0.154 0.069 0.028
MX39% 0.017 0.162 0.023 0.143 0.062 0.154 0.026 0.144 0.062 0.069 0.008 0.130
MZ=X40 0.062 0.133 0.055 0.108 0.099 0.089 0052 0.117 0045 0.117 0.067 0.054
MX41 0.137 0.085 0.133 0.065 0.147 0.060 0.108 0.031 0.155 0.045 0.095 0.000
MX42 0.121 0.072 0.11% 0.026 0.146 0.0562 0.090 0.104 0.026 0.109 0.124 0.012
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APPENDIX H

DATA SET F

Data set I consists of 10 of the texture variables from data set E. LM4 and
LMS5 from E have are not present in F. In addition to the 10 texture measures,
this data set includes the mean image brightness value, MEAN. The 11 variables
in data set F have been processed by the scale, invert, then force transformation

described in Section V. This data matrix, therefore, contains row sums with a

constant value of 1.0.




TABLE H-1. DATA SET F

VAR INR3 INRI15 HOM3 HOMI15 LM1 LM2 LM3 EDEN MBRL MEAN

MXo01 0.153 0.017 0.163 0.016 0.157 0.063 0.168 0.000 0.154 0.024 0.096
MX02 0.170 0.000 0.173 0.000 90.175 0016 0.172 0.003 0.175 0.005 0.111
MX03 0.165 0.004 90.165 0.004 0.165 0.012 0.145 0.038 0.164 0.025 0.112
MX04 0.07¢ 0.110 0.073 0.084 0.115 0095 0.069 0.094 0.071 0.061 0.162
MXe5 0.035 0.118 0.044 0.101 0.077 0.131 0.064 0.114 0.047 0.121 0.157
MX06 0.033 0.140 0.039 0.122 0.078 0.131 0.034 0.133 0.632 0.108 0.150
MX07 0.005 0.196 0.007 0.187 0.022 0.192 0.003 0.193 0.005 0.190 0.001
MX08 0.003 0.194 0.005 0.176 0.021 0.195 0.003 0.196 0.018 0.190 0.000
MX03 0.000 0.205 0.000 0205 0.000 0200 0.000 0.120 0.000 0.199 0.002
MX10 0.067 0.121 0.071 0.104 0.090 0.106 0.041 0.143 0.087 0.124 0.065
MX11 0.057 0.123 0.077 0.106 0.091 0.120 0.060 0.125 0.048 0.125 0.068
MX12 0.026 0.152 0.029 0.i137 0.062 0.146 0.030 0.136 0.028 0.138 0.1i16
MX13 0.079 0.112 0.096 0.093 0.111 0.078 ¢.070 0.099 0.066 0.084 0.112
MX14 0.081 0.096 0.084 0.133 0.108 0,085 0.059 0.1i5 0.075 0.069 0.091
MX15 0.136 0.064 0.126 0.075 0.1156 0.037 0.081 0.095 0.098 0.067 0.107
MX16 0.062 0.120 6.066 0.102 0.084 0.124 0.054 0.140 0.074 06.128 0.046
MX17 0.141 0.0561 0.140 0.063 0.138 0.033 0.141 0.025 0.112 0.026 0.131
MXis 0.032 0.155 0.038 0.1z6 G6.066 0.144 0.035 0.137 ©.041 0.147 0,079
MX19 0039 0137 0.043 0.114 0.0v5 0.130 0.041 0.131 0.056 0.116 ¢6.121
MX20 0.001 0.188 0.004 0.182 0012 0.189 6.001 0.182 0.001 0.189 0.051
MX21 0.045 0.161 0.048 0.130 0.060 0.134 0.043 0138 0.047 0.161 0.043
MX22 0.127 0.066 0.146 0.036 0.142 0050 0.118 0.050 0.126 0.074 0.077
MX23 0.094 0.065 0.117 0.040 0.140 0075 0.100 0.065 0.102 0.068 0.136
MX24 0.104 0.063 0.103 0.043 0.132 0.081 0.100 0.074 0.199 0.065 0.126
MX25 0.074 0,103 0.085 0.676 0.115 0.096 0.055 0.134 0©.092 0.090 0.080
MX26 0.0Y7 0.116 0.085 0.097 0.102 0.080 0.068 0.098 0.069 0.109 0.101
MX27 0.073 0.103 0.083 0.067 0.120 0103 0071 0.113 0.091 0.091 0.086
MX28 0.080 0.079 0.100 0.083 0.094 0.109 0.089 0.098 0.084 0.109 0.074
MX29 0.619 ©0.169 0.017 0.166 0.051 0.168 0.014 0.172 0.015 0.1564 0.064
MX30 0.039 0.153 0.036 0.132 0.074 0.127 0.035 0.146 0.062 0.194 0.102
MX31 0.039 0.170 0.626 0.157 0.040 0.143 0.027 0.166 0.023 0.169 0.0569
MX32 0.088 0.109 0.088 0.070 0.113 0.086 0.071 0.134 0.:95 0.086 0.060
MX33 0.081 0.122 0.065 0.107 0.103 0.090 0.061 0.116 0.051 0.0556 0.155
MZX34 0089 ©.115 0.075 0108 0.102 0.088 0.065 0.083 0.076 0.063 0.146
MX35 0.009 0.195 0.006 0.180 0.020 0.189 0.603 0.200 0.006 0.187 0.0056
MX36 6.090 0.100 0.094 0.082 0.12¢ 0.045 0.084 (08¢ 0.081 0.063 0.158
MX37 0.044 0.160 0.030 0.152 0.076 0.111 0.043 0,135 0.009 0.070 0.171
MX38 0.1i1 0111 0.088 0.085 0.116 0.038 0.073 0.106 0.071 0.029 0.174
MX39 0017 0.161 0.023 0.142 0.061 0.153 0.026 0,143 0.008 0.128 0.138
MX40 0.063 0.135 0.056 0.11% 0.100 0091 0053 0.119 0.068 0.05656 0.150
MX41 0.144 0.089 0.140 0.059 0.155 0.000 0.114 0.032 0.100 0.000 0.155
MX42 0.128 0076 €126 0.028 0.156 0.055 0.095 0.111 0.131 ©0.013 0.084




APPENDIX I

DATA SET G

Data set G is a subset of data set D. G contains only the texture variables
from D that were shown in Section IV to mix linearly, even when the mean
intensities of the two image halves were not equal. The six texture measures in

Table I-1 (HOM3, HOM15, LM2, LM3, LM4, and LM5) have been S1FTed to

row sums of 1.0.
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HOM3 HOM15 LM2 LM3 LM4 LM5b
MX01 0.032 0.309 0.000 0.330 0.000 0.330
MXo02 0.000 0.340 0.006 0.335 0.019 0.300
MXo03 0.008 0.326 0.039 0.251 0.084 0.292
MX04 0.165 0.225 0.198 0.148 0.263 0.011
MXo05 0.203 0.155 0.221 07 % 0.248 0.073
MX06 0.206 0.132 0.226 L.058 0.225 0.1563
MXo07 0.263 0.031 0.276 008 0.227 0.193
MXo08 0.245 0.029 0.279 ©0.009 1.229 0.209
MX09 0.278 0.000 0.278 0.019 6.199 0.2356
MX10 0.185 0.169 0.245 0.055 v.286 0.051
MX11 0.188 0.160 0.210 O 95 ¢.218 0.129
MX12 0.238 0.107 0.249 0.0¢7 0.232 0.107
MX13 0.175 0.209 0.186 0.132 0.199 0.100
MX14 0.237 0.193 0.182 0.083 0.213 0.091
MX15 0.135 0.207 0.161 0.136 0.189 0.173
MX16 0.191 0.i58 0.224 0.063 0.286 0.077
MX17 0.110 0.236 0.058 0.259 0.048 0.289
MX1i8 0.20Z 0.105 6.23% 0.074 0.189 0.210
MX19 0.217 0.142 0.248 0.077 0.288 0.028
MX20 0.271 0.018 0.280 0.011 0.232 0.188
MX21 0.208 0.096 0.235 0.081 0.174 0.206
MX22 0.069 0.274 0.108 0.240 0.111 0.197
MX23 0.081 0.283 0.127 0.199 0.109 0.201
MX24 0.086 0.265 0.136 0.189 0.189 0.136
MX25 0.151 0.228 0.223 0.066 0.323 0.009
MX26 0.171 0.180 0.190 0.133 0.136 0.191
MX27 0.127 0.227 0.190 0.111 0.231 0.114
MX28 0.154 0.173 0.157 0.140 0.190 0.186
MX29 0.264 0.086 0.288 0.020 0.312 0.031
MX30 0.242 0.135 0.246 0.043 0,282 0.053
MX31 0.239 0.062 0.258 0.061 0.215 0.165
MX32 0.128 0.207 0.194 0.078 0.284 0.108
MX33 0.200 0.193 0.210 0.118 0.246 0.032
MX34 0187 0176 0.138 0.167 0.129 0.163
MX35 0.2683 0.029 0.289 0.000 0.276 0.142
MX36 0.163 0.248 0.158 0.166 0.230 0.03b
MX37 0.275 0.135 0.238 0.072 0.279 0.000
MX38 0.162 0.220 0.193 0.130 0.263 0.032
MX39 0.232 0.100 0.247 0.055 0.189 0.177
MX40 0.204 0.186 0.210 0.089 0.223 0.088
MX41 0.112 0.252 0.119 0.252 0.038 0.227
MX42 0.055 0.307 0.144 0.113 0.278 0.103
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APPENDIX J

DATA SET H

Data set H is a subset of data set D. H contains four of the texture
variables from D that were shown in Section IV to mix linearly, even when the
mean intensities of image halves were not equal, plus the variable MEAN. The
five variables in Table J-1 (HOM3, HOM15, LM2, LM3, and MEAN) have been
SIFTed to row sums of 1.0.
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TABLE J-1, DATA SET H

HOM3 HOM15 LM2 M3 MEAN
MXo0i 0.039 0.381 9.000 0.406 0.175
MXo02 0.000 ¢.422 0.008 0.415 0.155
MX03 0.011 0.448 0053 0.345 0.143
MXo4 0.219 0.299 {.263 0.198 0.021
MXo5 0.292 0.223 1.318 0.146 0.020
MXo06 0.317 0.203 0.347 0.089 0.044
MXo07 0.307 0.036 0.321 0.011 0.325
MXo8 0.289 0.034 0.330 0.011 0.335
MX09 0.327 0.000 0.327 0.023 0.324
MX10 0.225 0.1956 0.283 0.064 0.233
MX11 0.221 0 189 0.247 0.112 0.230
MX1i2 0.312 0.141 0.327 0.087 0.133
MX13 0.216 4. 268 0.230 6.163 0.134
MX14 0.288 0.236 0.222 0.102 0.153
MX15 0.17¢ 0.275 ¢.213 0.189 0.153
MX16 0.218 0.181 0.2566 0.072 0.273
MX17 0.148 0.31% 0.078 0.351 0.103
MX1g 0.287 0.123 0.203 0.094 0.212
MX19 0.279 0.182 0.318 0.099 0.123
MX2¢ 0.345 0.023 0.356 0.014 0.262
MX21 0.243 0.112 0.275 0.095 0.274
MX22 0.079 0.312 0.123 0.273 0.213
MX23 0.109 0.378 0.170 0.267 0.076
MX24 0.113 0.348 0.179 0.248 0.112
MX25 0.179 0.272 0.265 0.079 0.205
MX26 0.213 0.224 0.236 0.166 0 160
MX27 0.155 0.278 0.232 0.136 0.199
MX28 0.191 0.214 0.194 0.173 0.228
MX29 0.307 0.099 0.334 0.023 0.236
MX30 0.306 0.171 0.111 0.955 0.158
MX31 0.289 0.074 0.311 0.074 0.252
MX32 0.166 0.252 0.237 0.095 0.260
MX33 0.265 0.255 0.278 0.156 0.048
MX34 0.248 ¢.234 0.249 0.208 0.062
MX35 0.303 0.034 0.333 0.000 0 4.0
MX36 0.219 0.134 0.212 0.222 0.013
MX37 0.373 0.186 0.327 0.099 0.009
MX38 0.230 0.312 0.273 0.184 0.000
MX39 0.333 0.143 0.354 0.679 0.091
MX40 0.283 0.259 0.292 0.124 0.042
MX41 0.142 0.320 C.152 1.320 0.066
MX42 0.070 0.391 0.184 0.144 0.212

s,




APPENDIX K
DATA SET 1

Data set 1 consists of 42 synthetic mixture images labeled NX1 through
NX42. These mixtures correspond to samples MX1 through MX42 in data set
D (Appendix F), except that mean intensity levels in the components of the
mixture are not adjusted to a given level prior to mosaicking, as was the case for
data set D. Table K-1 contains numerical values for each sample in [ for mean
intensity and for each of the six texture measures, which were shown in Section
IV to mix linearly when mean intensities of mixture components vary (HOM3,
HOM15, LM2, LM3, LM4, and LM5). Formatting and scaling of variables in
Table K-1 is the same as in Table C-1.

Table K-1 also contains the compositions of each mixture by ice type.

These are given at the bottom of the table.
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TABLE K-1. VALUES OF TEXTURE MEASURES FOR DATA SET I

MEAS. S.F. NX1 NX2 NX3 NX4 NX5 NX6 NX7 NX38
MEAN 102 1.200 1.286 1.355 1.728 1.736 1.666  0.418 0.413
HOM3 10! 1.273 1.226 1.237 1.456 1,508 1.655 1.658 1.629
HOM15 107!} 0.741 0.684 0.676  0.959 1.057 1.052 1.345 1.381
LM2 1018 0.883 0.832 0.841 0.407 0.347  0.259  0.106 0.104
LM3 1013 1.331 1.265 1.146  0.793 0.647  0.574  0.401 0.387
LM4 101 1.056 0.991 0.954  0.711 0.598  0.708  0.687 0.677
LMS5 10° 2.884 2.709 2.830 2.134 2.234  2.543  2.625 2.660
% FY 0 0 0 0 0 0 100 100
% SY 0 0 0 100 100 100 0 0
% MY 100 100 100 0 0 0 0 0
TABLE K-1. continued
MEAS. S.F. NX9 NX10 NX11 NX12 NX13 NXi4 NX15 NX1s
MEAN 1¢? 0.427 0.931 0.839 1.332 1.328 1.19¢ 1.277 0.783
HOM3 10! 1.692 1.501 1.496 1.590 1.480 1.451 1.419 1.495
TOMLIE 107! 1.443 1.003 1.024 1.118 0.927  0.897 0.876 1.056
LM2 1018 0.08% 0.316 0.362 0.422 0.577 0.543 0.892 0.331
LM3 1012 0.434 0560  0.651  0.741 0.870  0.758 1.078  0.548
LM4 1013 0.740 0.6565 0.742 0,821 0.848 0.792 0.898 0.654
L5 10° 2.742 2.212 2.430  2.698 2.567 2.514 2.720 2.276
% FY 100 50 £9 25 25 25 25 50
% SY 0 25 25 50 50 25 25 0
% MY 0 25 25 25 25 50 50 50
252




TABLE K-1. continued

MEAS. S.F. NX17 NX18 NX19 NX20 NX21 NX22 NX23 NX24
MEAN 102 1.446 1.010 1.387  0.786  0.728 1.02¢ 1.556 1.445
HOM3 10~} 1.393 1.534 1.530 1.668 1.541 1.310 1.337 1.341
HOMI15 10! 0.842 1.112 1.056 1.348 1.i83 0.785 0774  0.824
LM2 108 0.806 0.243 0.426 0.354 0.486 0.614 0.557 0.538
LM3 1013 1.271 0.609 0.691 0.579 0.711 1.030 0.917 6.904
LM4 1013 1.037  0.790  0.716 0.807 0.861 0.892 0882 0.812
LM5 10° 2.947 2,646 2304 2925 2.794 2.539 2539  2.457
% FY 0 50 25 7B 75 26 0 0
% SY 50 50 75 25 0 0 75 25
% MY 50 0 ] 0 25 75 25 75
TABLE X-1. continued
MEAS. S.F. NX26 NX26 NX27 NX28 NX29 NX30 NX31 NX32
MEAN 103 1.077 1.214 1.105 1.004 0.894 1.239  0.630  0.883
HOM3 107! 1.429 1.482 1.4 1.435 1.618 1.584 1.589 1.407
HOMI15 10-! 0.879  0.957  0.846 0.955 1.214 1.091 1.252 0.936
LM2 1018 0.343  0.383  0.412 0.487 0.151 0.250  0.197 0.398
1L.M3 1018 0566  0.776  0.689 0.701 0.427 0.499  0.569  0.594
L.M4 L3 0.613  0.847  0.728 0.787 0.601 0.641 0.724  0.655
LM5 106° 2.i18 2672 2.364 2.566 2.172 2.227  2.616 2.351
% FY 33 33 33 33 67 33 67 33
% SY 33 33 32 33 33 67 0 0
% MY 33 13 33 33 0 0 33 6"




TABLE K-1. continued

MEAS. SF. NX33 NX34 NX356 NX36 NX37 NX38 NX39 NX40

MEAN 102 1.646 1.679  0.448 1.753 1.765 1.795 1.492 1.660
HOM3 10! 1.510 1,521 1.651 1.468 1.640 1.460 1.608 1.540
HOMI15 10-1 0.973 1.019 1.417  0.911 1.167 0.989 1.230 1.034
LM2 10! 0.360 0.377  0.103  0.485 0.280 0.414 0204 0326
LM3 10'8 0.709 0.859 0.367 0.845 0.581 0.734 0.547 0.638
LM4 1013 0.707 0.851 (.626 0.729 0.652 0.693 0.754 0,723

LMS 10° 2.174 25611 2466  2.180 2.097 2171 2,564 2315
% FY 0 0 100 0 0 G 0 0
% SY 67 33 0 100 100 100 100 100
% MY 33 67 0 0 0 0 0 0

TABLE K-1. continued

MEAS, S.F. NX41 NX42

MEAN 10? 1.561 1.104
HOM3 10°! 1.406  1.314
HOM15 1071 0.863  0.791
LM2 j01¢ 0567  0.525

LM3 1012 1.143  0.686 :
L.M4 1013 0.98¢  0.674 B
LM5 10° 2.6656  2.333
% FY 0 0 .
% SY 9 0
Y% MY 100 100 K




APPENDIX L
DATA SET J

Data set J is a subset of data set I. J contains only the texture variables
from 1 that were shown in Section [V to mix linearly, even when the mean
intensities of the two image halves were not equal. The six texture measures in

Table L-1 (HOM3, HOM15, LM2, LM3, LM4, and LM5) have been SIFTed to

row surms of 1.0.
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TABLE L-i. DATA SET J

HOM3 HOMI15 L2 LM3 LM4 LM5
NX01 0.034 0.310 0.004 0.339 0.000 0.314
NX02 0.000 0.346 0.026 0.326 0.050 0.252
NX03 0.008 0.336 0.021 0.271 0.075 0.289
NX04 0.166 0.212 0.204 0.148 0.265 0.015
NX05 0.200 0.166 0.226 0.096 0.260 0.053
NX06 0.201 0.145 0.225 0.061 0.218 0.149
NXo07 0.264 0.036 0.281 0.010 0.231 0.177
NX08 0.251 0.023 0.287 0.006 0.241 0.192
NX09 0.284 0.000 0.284 0.020 0.197 0.215
NX10 0.191 0.165 0.234 0.061 0.285 0.044
NX11 0.183 0.172 0.210 0.093 0.218 0.124
NX12 0.237 0.130 0.179 0.118 0.157 0.179
NX13 0.173 0.214 0.126 0.166 0.145 0.176
NX14 0.155 0.228 0.141 0.130 0.187 0.158
NX15 0.139 0.249 0.000 0.248 0.117 0.247
NX16 0.188 0.164 0.229 0.061 0.288 0.069
NX17 0.111 0.243 0.033 0.290 0.013 0.310
NX18 0.195 0.127 0.240 0.074 0.173 0.191
NX19 0.213 0.164 0.191 0.110 (.244 0.079
NX20 0.272 0.036 0.193 0.063 0.167 0.279
NX21 0.208 0.i04 0.1956 0.110 0.132 0.252
NX22 0.061 0.287 0.119 0.234 0.123 0.177
NX23 0.079 0.290 0.140 0.190 0.127 0.173
NX24 0.082 0.268 0.147 0.185 0.178 0.140
NX25 0.143 0.24) 0.226 0.064 0.319 0.008
NX26 0.168 0.194 0.196 0.130 0.141 0.171
NX27 0.120 0.249 0.193 0.107 0.231 0.101
NX28 0.142 0.202 0.154 0.133 0.187 0.175
NX29 0.261 0.093 0.289 0.019 0.311 0.027
NX30 0.238 0.142 0.249 n.042 0.282 0.047
NX31 0.235 0.075 0.263 0.060 0.220 0.148
NX32 0.126 0.214 0.201 0.076 0.286 0.097
NX33 0.196 0.198 0.215 0.114 0,247 0.029
NX34 0.193 0.169 0.187 0.166 0.137 0.148
NX35 0.275 0.010 0.299 0.000 0.285 0.131
NX36 0.171 0.228 0.168 0.163 0.237 0.032
NX37 0.284 0.115 0.24% 0.971 0.284 0.000
NX38 0.170 0.200 0.203 0.129 0.270 0.029
NX39 0.244 0.083 0.257 0.0566 0.198 0.163
NX40 0.212 0.163 0.220 0.089 0.231 0.081
NX41 0.121 0.237 0.132 0.253 0.048 0.216
NX42 0.064 0.288 0.156 0.112 0.285 0.094




APPENDIX M
DATA SET K

Data set K is a subset of data set 1. K contains four of the texture variables
from I that were shown in Section IV to mix linearly, even when the mean
intensities of image halves were not equal, plus the variable MEAN. The five

variables in Teble M-1 (HOM3, HOM15, LM2, LM3, and MEAN) have been

SIFTed to row sums of 1.0.




TABLE M-1. DATA SET K
HOM3 HOMI5 LM2 LM3 MEAN
NX01 0.085 0.336 0.004 0.367 0.209
NX02 0.000 0.377 0.029 0.354 0.240
NXo03 0.021 0.383 0.025 0.310 0.261
NX04 0.301 0.168 0.162 0.117 0.253 i
NX05 0.363 0,132 0.179 0.976 0.250
NX06 0.401 0.126 0.197 0.053 0.223
NX07 0.649 0.039 0.301 0.011 0.001 4
NXo08 0.645 0.026 0.321 0.007 0.000
NX09 0.680 0.000 0.296 0.021 0.003 |
NX10 0.421 0.178 0.225 0.059 0.117 §
NX11 0.414 0.170 0.207 0.082 0.118
NXi2 0.464 0.110 0.153 6.100 0.172
NX13 0.358 9.192 0.113 0.149 0.188 ¢
NX14 0.344 6.221 0.136 9.126 0.174
NX15 0.311 0.242 0.000 0.242 0.205
NX16 0.443 0.169 0.235 0.063 0.090
NX17 0.242 0.231 0.032 0.276 0.220
NX18 0.440 0.125 0.236 0.073 0.125 -
NX19 0.413 0.139 0.161 0.093 0.194 |
NX20 0.628 0.036 0.195 0.063 0.078
NX21 0.499 0.109 0.204 0.115 0.673
NX22 0.151 0.308 0.127 6.251 0.163
NX23 0.169 0.269 0.130 0.176 0.256
NX24 0.181 0,259 0.142 0.178 0.239
NX25 0.323 0.237 0.222 0.063 0.155 q
NX26 0.367 0.179 0.181 0.120 0.164
NX27 0.279 0.253 0.196 0.109 0.163
NX28 0.341 0.211 0.168 0.159 0.142
NX29 0.541 0.084 0.260 0.017 0.098
NX30 0.469 0.122 0.214 0.036 0.159
NX31 0.524 0.073 0.256 0.058 0.088 |
NX32 0.324 0.241 0.226 0.086 0.124
NX33 0.356 0.156 0.170 0.090 0.227
NX34 0.363 0.138 0.161 0.127 0.211
NX35 0.666 0.011 0.3156 0.000 0.008
NX36 0,209 0.180 0.132 0.128 0.251
NX37 0.467 0.082 0.176 0.051 0.224 4
NX38 0.309 0.159 0.161 0.102 0.268
NX39 0.472 0.070 0.216 0.047 0.196
NX40 0.390 0.135 0.176 0.071 0.228
NX41 0.239 0.205 0.114 0.218 0.225

NX42 0.168 0.330 0.179 0.129 0.194




APPENDIX N

DATA SET L

Data set L is a SIFTed version of data set I




i TABLE N-1. DATA SET L

HOM3 HOMI15  LM2 LM3 LM4 LM5 MEAN
NX01 0.030 0.270 0.003 0,296 0.000 0.274 0.127
NX02 0.000 0.307 0.023 0.289 0.044 0.223 0.114
NX03 0.007 0.303 0.019 0.245 0.068 0.261 0.096
NX04 0.163 0.209 0.201 0.146 0.251 0.014 0.016
NX05 0.197 0.164 0.222 0.095 0.256 0.052 0.014
NX06 0.195 0.141 0.220 0.059 0.212 0.145 0.028
RS NX07 0.206 0.028 0.219 0.008 0.180 0.138 0.221
NX08 0.194 0.018 0.222 0.905 0.187 0.149 0.225
NX09 0.222 0.000 0.222 0.015 0.154 0.168 0.219
NX10 0.159 0.154 0.194 0.051 6.237 0.036 0.168
NX11 0.153 0.144 0.176 0.078 0.182 0.103 0.164
NX12 0.215 0.118 0.163 0.107 0.142 0.163 0.092
NX13 0.156 0.193 0.113 0.150 0.131 0.159 0.098
NX14 0.136 0.201 0.123 0.114 0.164 0.138 0.123
NX15 0.124 0.221 0.000 0.220 0.104 0.219 0.112
& NX16 0.152 0.133 0.185 0.049 0.233 0.055 0.193
T NX17 0.103 0.225 0.031 0.269 0.012 0.287 0.073
= NX18 0.167 0.109 0.206 0.063 0.148 0.165 0.144
NX19 0.194 0.150 0.174 0.100 0.222 0.072 0.088
NX20 0.225 0.029 0.160 0.052 0.130 0.231 0.173
NX21 0.168 0.084 0.158 0.089 0.106 0.204 0.192
NX22 0.052 0.242 0.100 0.197 0.103 0.149 0.159
NX23 0.075 0.275 0.132 0.180 0.120 0.164 0.054
NX24 0.076 0.247 0.136 0.170 0.164 0.130 0.077
NX25 0.122 0.205 0.193 0.055 0.272 0.007 0.145
NX26 0.149 0.172 0.173 0.115 0.125 0.152 0.114
NX27 0.103 0.215 0.166 0.092 0.199 0.087 0.138
NX23 0.120 0.171 0.136 0.112 0.159 0.148 0.154
NXY29 0.27 0.977 0.240 0.016 0.258 0.023 0.168
NX30 0.211 0.126 0.221 0.038 0.251 0.042 0.111
NX31 0.194 0.062 0.217 0.050 0.182 0.123 0.174
NX32 0.104 6.177 2.166 0.063 0.235 0.080 0.176
NX33 0.189 ¢.191 6.208 0.111 0.239 0.028 0.034
NX34 0.184 0.161 0.188 0.149 0.131 0.142 0.045
NX35 6.213 0.008 0.231 0.000 0.220 0.101 0.227
u NX36 0.169 0.226 0.157 0.162 0,234 0.032 0.010 i
: NX37 0.282 n.114 0.244 0.071 0.282 0000 0.007 )
NX38 0.170 0.200 0.203 0.129 0.270 0.029 0.000
NX39 0.229 0.078 n.241 2,052 0.185 0.153 0.061
NX40 0.206 0.163 C.213 0.086 0.224 0.078 0.030 .
NX41 0.114 0.22b 0.126 0.240 0.046 0.199 0.050 -
NX42 0.055 0.247 0.134 0.096 0.244 0.081 0.145
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APPENDIX O

DATA SET M

Data set M consists of 10 mixture images. Samples BX1 through BX4
are images of natural mixtures of first-year and multiyear ice. Samples BX5
through BX10 are large synthetic mixtures constructed by mosaicking samples
from data set 1. Table O-1 contains numerical values for each sample in M for
mean intensity and for each of the six texture measures, which were shown in
Section IV to mix linearly when mean intensities of mixture components vary
(HOM3, HOM15, LM2, LM3, LM4, LM5). Formatting and scaling of variables
in Table O-1 is the same as in Table C-1.

Table K-1 also coniains compositions of each mixture by ice iy
AJ

are given at the bottom of the table.
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TABLE 0-1, VALUES OF TEXTURE MEASURES FOR DATA SET M

MEAS. S.F. BX1 BX2 BX3 BX4 BX5b BX6 BX7 BX8
MEAN 10?2 0.508  0.999  0.720 0.839  0.427 1.721 1.284 1.673
HOM3 10! 1.564 1.295 1.458 1.319 1.653 1.484 1.277 1.564
HOMI15 107! 1.262  0.781 1.100 0.867 1.38¢  0.956 0.731 1.152
LM?2 1018 0.375 1.016 0.495 0.945 0.104  0.384 0.783 0.245
LM3 10!8 0.623 1.138  0.742 0992 0.410 0.7124 1.15] 0.576
LM4 1012 0.738 0.912 0.779 0.839 0.692 0.735 0.950 0.723
LM5 10° 2,578  2.641 2.591 2563 2,627  2.321 2.685 2.493
% FY 90 40 69 60 100 0 0 50
% SY 0 0 0 0 0 100 0 50
% MY 10 60 31 40 0 0 100 0
TABLE O-1. continued
MEAS. S.F. BX9 BX10
MEAN 10? 0.889 1.525
HOM3 10! 1.462 1.378
HOM15 10-1 1.044 0.838
LM2 10i¢ 0.441 0.585
LM3 1013 0.808 0.976
LM4 103 0.839 0.868
LM5 10° 2.681 2.544
% FY 50 0
% SY 0 50
% MY 50 50




-APPENDIX P
DATA SET N

Data set N is a subset of data set M. N contains MEAN plus four of the
texture variables from N, which were shown in Section IV to mix linearly, even
when the mesn intensities of the two image halves were not equal. The five
texiure measures in Table P-1 (HOM3, HOM15, LM2, LM3, and MEAN) have

been SIFTed to row sums of 1.0.

TABLE P-1. DATA SET N

HOM3 HOM15 LM2 LM3 MEAN




APPENDIX Q

DATA SET O

Data set O is a subset of data set M. O contains only the texture variables
from M, which were shown in Section IV te mix linearly, even when the mean
intensities of the two image halves were not equal. The six texture measures in

Table Q-1 (HOM3, HOM15, LM2, LM3, LM4, and LM5) have been SIi'Ted to

row sums of 1.0.

TABLE Q-1. DATA SET O

- HOM3 HOMI15 LM2 LM3 LM4 LMS
BX01 0.220 0.054 0.203 0.082 0.237 0.204
BX02 0.016 0.311 0.000 0.327 0.050 0.296
BX03 0.144 0.139 0.171 0.133 o 0.199 0.222
BX04 0.039 0.278 0.027 0.272 0.151 0.233
BXo05 0.260 0.000 0.260 0.000 0.260 0.219
BX06 0.175 0.208 0.220 0.133 0.265 0.000
BX07 0.000 0.307 0.078 0.307 0.600 0.307
BX08 0.216 0.100 0.239 0.062 0.249 0.134
BX09 0.137 0.145 0.176 0.148 0.120 0.275
BX10 0.082 0.256 0.146 0.231 0.097 0.188
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